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Part II

General Optimization Modeling

Tricks



Chapter 6

Linear Programming Tricks

This chapterThis chapter explains several tricks that help to transform some models with

special, for instance nonlinear, features into conventional linear programming

models. Since the fastest and most powerful solution methods are those for

linear programming models, it is often advisable to use this format instead of

solving a nonlinear or integer programming model where possible.

ReferencesThe linear programming tricks in this chapter are not discussed in any partic-

ular reference, but are scattered throughout the literature. Several tricks can

be found in [Wi90]. Other tricks are referenced directly.

Statement of a

linear program

Throughout this chapter the following general statement of a linear program-

ming model is used:

Minimize:
∑

j∈J

cjxj

Subject to: ∑

j∈J

aijxj ≷ bi ∀i ∈ I

xj ≥ 0 ∀j ∈ J

In this statement, the cj ’s are referred to as cost coefficients, the aij ’s are re-

ferred to as constraint coefficients, and the bi’s are referred to as requirements.

The symbol “≷” denotes any of “≤” , “=”, or “≥” constraints. A maximiza-

tion model can always be written as a minimization model by multiplying the

objective by (−1) and minimizing it.

6.1 Absolute values

The modelConsider the following model statement:

Minimize:
∑

j∈J

cj|xj| cj > 0

Subject to: ∑

j∈J

aijxj ≷ bi ∀i ∈ I

xj free
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Instead of the standard cost function, a weighted sum of the absolute values

of the variables is to be minimized. To begin with, a method to remove these

absolute values is explained, and then an application of such a model is given.

Handling

absolute

values . . .

The presence of absolute values in the objective function means it is not possi-

ble to directly apply linear programming. The absolute values can be avoided

by replacing each xj and |xj| as follows.

xj = x+j − x
−
j

|xj| = x+j + x
−
j

x+j , x
−
j ≥ 0

The linear program of the previous paragraph can then be rewritten as follows.

Minimize:
∑

j∈J

cj(x
+
j + x

−
j ) cj > 0

Subject to: ∑

j∈J

aij(x
+
j − x

−
j ) ≷ bi ∀i ∈ I

x+j , x
−
j ≥ 0 ∀j ∈ J

. . . correctlyThe optimal solutions of both linear programs are the same if, for each j, at

least one of the values x+j and x−j is zero. In that case, xj = x
+
j when xj ≥ 0,

and xj = −x−j when xj ≤ 0. Assume for a moment that the optimal values

of x+j and x−j are both positive for a particular j, and let δ = min{x+j , x
−
j }.

Subtracting δ > 0 from both x+j and x−j leaves the value of xj = x+j − x
−
j

unchanged, but reduces the value of |xj| = x
+
j +x

−
j by 2δ. This contradicts the

optimality assumption, because the objective function value can be reduced by

2δcj .

Application:

curve fitting

Sometimes xj represents a deviation between the left- and the right-hand side

of a constraint, such as in regression. Regression is a well-known statistical

method of fitting a curve through observed data. One speaks of linear regres-

sion when a straight line is fitted.

ExampleConsider fitting a straight line through the points (vj ,wj) in Figure 6.1. The

coefficients a and b of the straight line w = av + b are to be determined.

The coefficient a is the slope of the line, and b is the intercept with the w-axis.

In general, these coefficients can be determined using a model of the following

form:

Minimize: f(z)

Subject to:

wj =avj + b − zj ∀j ∈ J
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v

w

(0, b)

(0, 0)

slope is a

Figure 6.1: Linear regression

In this model zj denotes the difference between the value of avj +b proposed

by the linear expression and the observed value, wj. In other words, zj is the

error or deviation in the w direction. Note that in this case a, b, and zj are the

decision variables, whereas vj and wj are data. A function f(z) of the error

variables must be minimized. There are different options for the objective

function f(z).

Different

objectives in

curve fitting

Least-squares estimation is an often used technique that fits a line such that

the sum of the squared errors is minimized. The formula for the objective

function is:

f(z) =
∑

j∈J

z2
j

It is apparent that quadratic programming must be used for least squares es-

timation since the objective is quadratic.

Least absolute deviations estimation is an alternative technique that minimizes

the sum of the absolute errors. The objective function takes the form:

f(z) =
∑

j∈J

|zj|

When the data contains a few extreme observations, wj , this objective is ap-

propriate, because it is less influenced by extreme outliers than is least-squares

estimation.

Least maximum deviation estimation is a third technique that minimizes the

maximum error. This has an objective of the form:

f(z) = max
j∈J

|zj|

This form can also be translated into a linear programming model, as ex-

plained in the next section.
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6.2 A minimax objective

The modelConsider the model

Minimize: max
k∈K

∑

j∈J

ckjxj

Subject to: ∑

j∈J

aijxj ≷ bi ∀i ∈ I

xj ≥ 0 ∀j ∈ J

Such an objective, which requires a maximum to be minimized, is known as a

minimax objective. For example, when K = {1,2,3} and J = {1,2}, then the

objective is:

Minimize: max{c11x1 + c12x2 c21x1 + c22x2 c31x1 + c32x2}

An example of such a problem is in least maximum deviation regression, ex-

plained in the previous section.

Transforming a

minimax

objective

The minimax objective can be transformed by including an additional decision

variable z, which represents the maximum costs:

z = max
k∈K

∑

j∈J

ckjxj

In order to establish this relationship, the following extra constraints must be

imposed: ∑

j∈J

ckjxj ≤ z ∀k ∈ K

Now when z is minimized, these constraints ensure that z will be greater than,

or equal to,
∑
j∈J ckjxj for all k. At the same time, the optimal value of z

will be no greater than the maximum of all
∑
j∈J ckjxj because z has been

minimized. Therefore the optimal value of z will be both as small as possible

and exactly equal to the maximum cost over K.

The equivalent

linear program

Minimize: z

Subject to: ∑

j∈J

aijxj ≷ bi ∀i ∈ I

∑

j∈J

ckjxj ≤ z ∀k ∈ K

xj ≥ 0 ∀j ∈ J

The problem of maximizing a minimum (a maximin objective) can be trans-

formed in a similar fashion.
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6.3 A fractional objective

The modelConsider the following model:

Minimize:

(∑

j∈J

cjxj +α

)/ (∑

j∈J

djxj + β

)

Subject to: ∑

j∈J

aijxj ≷ bi ∀i ∈ I

xj ≥ 0 ∀j ∈ J

In this problem the objective is the ratio of two linear terms. It is assumed

that the denominator (the expression
∑
j∈J djxj + β) is either positive or neg-

ative over the entire feasible set of xj . The constraints are linear, so that a

linear program will be obtained if the objective can be transformed to a linear

function. Such problems typically arise in financial planning models. Possible

objectives include the rate of return, turnover ratios, accounting ratios and

productivity ratios.

Transforming a

fractional

objective

The following method for transforming the above model into a regular linear

programming model is from Charnes and Cooper ([Ch62]). The main trick is to

introduce variables yj and t which satisfy: yj = txj . In the explanation below,

it is assumed that the value of the denominator is positive. If it is negative, the

directions in the inequalities must be reversed.

1. Rewrite the objective function in terms of t, where

t = 1/(
∑

j∈J

djxj + β)

and add this equality and the constraint t > 0 to the model. This gives:

Minimize:
∑

j∈J

cjxjt +αt

Subject to: ∑

j∈J

aijxj ≷ bi ∀i ∈ I

∑

j∈J

djxjt + βt = 1

t > 0

xj ≥ 0 ∀j ∈ J

2. Multiply both sides of the original constraints by t, (t > 0), and rewrite

the model in terms of yj and t, where yj = xjt. This yields the model:
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Minimize:
∑

j∈J

cjyj +αt

Subject to: ∑

j∈J

aijyj ≷ bit ∀i ∈ I

∑

j∈J

djyj + βt = 1

t > 0

yj ≥ 0 ∀j ∈ J

3. Finally, temporarily allow t to be ≥ 0 instead of t > 0 in order to get a

linear programming model. This linear programming model is equivalent

to the fractional objective model stated above, provided t > 0 at the

optimal solution. The values of the variables xj in the optimal solution

of the fractional objective model are obtained by dividing the optimal yj
by the optimal t.

6.4 A range constraint

The modelConsider the following model:

Minimize:
∑

j∈J

cjxj

Subject to:

di ≤
∑

j∈J

aijxj ≤ ei ∀i ∈ I

xj ≥ 0 ∀j ∈ J

When one of the constraints has both an upper and lower bound, it is called

a range constraint. Such a constraint occurs, for instance, when a minimum

amount of a nutrient is required in a blend and, at the same time, there is a

limited amount available.

Handling

a range

constraint

The most obvious way to model such a range constraint is to replace it by two

constraints:

∑

j∈J

aijxj ≥ di and

∑

j∈J

aijxj ≤ ei ∀i ∈ I

However, as each constraint is now stated twice, both must be modified when

changes occur. A more elegant way is to introduce extra variables. By intro-

ducing new variables ui one can rewrite the constraints as follows:

ui +
∑

j∈J

aijxj = ei ∀i ∈ I
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The following bound is then imposed on ui:

0 ≤ ui ≤ ei − di ∀i ∈ I

It is clear that ui = 0 results in

∑

j∈J

aijxj = ei

while ui = ei − di results in ∑

j∈J

aijxj = di

The equivalent

linear program

A summary of the formulation is:

Minimize:
∑

j∈J

cjxj

Subject to:

ui +
∑

j∈J

aijxj = ei ∀i ∈ I

xj ≥ 0 ∀j ∈ J

0 ≤ ui ≤ ei − di ∀i ∈ I

6.5 A constraint with unknown-but-bounded coefficients

This sectionThis section considers the situation in which the coefficients of a linear in-

equality constraint are unknown-but-bounded. Such an inequality in terms

of uncertainty intervals is not a deterministic linear programming constraint.

Any particular selection of values for these uncertain coefficients results in an

unreliable formulation. In this section it will be shown how to transform the

original nondeterministic inequality into a set of deterministic linear program-

ming constraints.

Unknown-but-

bounded

coefficients

Consider the constraint with unknown-but-bounded coefficients ãj

∑

j∈J

ãjxj ≤ b

where ãj assumes an unknown value in the interval [Lj , Uj], b is the fixed

right-hand side, and xj refers to the solution variables to be determined. With-

out loss of generality, the corresponding bounded uncertainty intervals can be

written as [aj −∆j , aj +∆j], where aj is the midpoint of [Lj , Uj].
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Midpoints can

be unreliable

Replacing the unknown coefficients by their midpoint results in a deterministic

linear programming constraint that is not necessarily a reliable representation

of the original nondeterministic inequality. Consider the simple linear pro-

gram

Maximize: x

Subject to:

ãx ≤ 8

with the uncertainty interval ã ∈ [1,3]. Using the midpoint a = 2 gives the

optimal solution x = 4. However, if the true value of ã had been 3 instead of

the midpoint value 2, then for x = 4 the constraint would have been violated

by 50%.

Worst-case

analysis

Consider a set of arbitrary but fixed xj values. The requirement that the con-

straint with unknown-but-bounded coefficients must hold for the unknown

values of ãj is certainly satisfied when the constraint holds for all possible

values of ãj in the interval [aj − ∆j , aj + ∆j]. In that case it suffices to con-

sider only those values of ãj for which the term ãjxj attains its maximum

value. Note that this situation occurs when ãj is at one of its bounds. The sign

of xj determines which bound needs to be selected.

ãjxj ≤ ajxj +∆jxj ∀xj ≥ 0

ãjxj ≤ ajxj −∆jxj ∀xj ≤ 0

Note that both inequalities can be combined into a single inequality in terms

of |xj|.

ãjxj ≤ ajxj +∆j|xj| ∀xj

An absolute

value

formulation

As a result of the above worst-case analysis, solutions to the previous formula-

tion of the original constraint with unknown-but-bounded coefficients ãj can

now be guaranteed by writing the following inequality without reference to ãj .

∑

j∈J

ajxj +
∑

j∈J

∆j|xj| ≤ b

A tolerance . . .In the above absolute value formulation it is usually too conservative to require

that the original deterministic value of b cannot be loosened. Typically, a

tolerance δ > 0 is introduced to allow solutions xj to violate the original right-

hand side b by an amount of at most δmax(1, |b|).
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. . . relaxes the

right-hand side

The term max(1, |b|) guarantees a positive increment of at least δ, even in case

the right-hand side b is equal to zero. This modified right-hand side leads to

the following δ-tolerance formulation where a solution xj is feasible whenever

it satisfies the following inequality.

∑

j∈J

ajxj +
∑

j∈J

∆j|xj| ≤ b + δmax(1, |b|)

The final

formulation

This δ-tolerance formulation can be rewritten as a deterministic linear pro-

gramming constraint by replacing the |xj| terms with nonnegative variables

yj , and requiring that −yj ≤ xj ≤ yj . It is straightforward to verify that these

last two inequalities imply that yj ≥ |xj|. These two terms are likely to be

equal when the underlying inequality becomes binding for optimal xj values

in a linear program. The final result is the following set of deterministic lin-

ear programming constraints, which captures the uncertainty reflected in the

original constraint with unknown-but-bounded coefficients as presented at the

beginning of this section.

∑

j∈J

ajxj +
∑

j∈J

∆jyj ≤ b + δmax(1, |b|)

−yj ≤ xj ≤ yj

yj ≥ 0

6.6 A probabilistic constraint

This sectionThis section considers the situation that occurs when the right-hand side of a

linear constraint is a random variable. As will be shown, such a constraint can

be rewritten as a purely deterministic constraint. Results pertaining to proba-

bilistic constraints (also referred to as chance-constraints) were first published

by Charnes and Cooper ([Ch59]).

Stochastic

right-hand side

Consider the following linear constraint

∑

j∈J

ajxj ≤ B

where J = {1,2, . . . , n} and B is a random variable. A solution xj , j ∈ J, is

feasible when the constraint is satisfied for all possible values of B.

Acceptable

values only

For open-ended distributions the right-hand side B can take on any value be-

tween −∞ and +∞, which means that there cannot be a feasible solution. If

the distribution is not open-ended, suppose for instance that Bmin ≤ B ≤ Bmax,

then the substitution of Bmin for B results in a deterministic model. In most
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practical applications, it does not make sense for the above constraint to hold

for all values of B.

A probabilistic

constraint

Specifying that the constraint
∑
j∈J ajxj ≤ B must hold for all values of B

is equivalent to stating that this constraint must hold with probability 1. In

practical applications it is natural to allow for a small margin of failure. Such

failure can be reflected by replacing the above constraint by an inequality of

the form

Pr


∑

j∈J

ajxj ≤ B


 ≥ 1−α

which is called a linear probabilistic constraint or a linear chance-constraint.

Here Pr denotes the phrase ”Probability of”, and α is a specified constant frac-

tion (∈ [0,1]), typically denoting the maximum error that is allowed.

Deterministic

equivalent

Consider the density function fB and a particular value of α as displayed in

Figure 6.2.

B̂

B-axis

1−α

Figure 6.2: A density function fB

A solution xj , j ∈ J, is considered feasible for the above probabilistic con-

straint if and only if the term
∑
j∈J ajxj takes a value beneath point B̂. In

this case a fraction (1 − α) or more of all values of B will be larger than the

value of the term
∑
j∈J ajxj . For this reason B̂ is called the critical value. The

probabilistic constraint of the previous paragraph has therefore the following

deterministic equivalent:

∑

j∈J

ajxj ≤ B̂

Computation of

critical value

The critical value B̂ can be determined by integrating the density function from

−∞ until a point where the area underneath the curve becomes equal to α. This

point is then the value of B̂. Note that the determination of B̂ as described in

this paragraph is equivalent to using the inverse cumulative distribution func-

tion of fB evaluated at α. From probability theory, the cumulative distribution



Chapter 6. Linear Programming Tricks 73

function FB is defined by FB(x) = Pr[B ≤ x]. The value of FB is the cor-

responding area underneath the curve (probability). Its inverse specifies for

each particular level of probability, the point B̂ for which the integral equals

the probability level. The cumulative distribution function FB and its inverse

are illustrated in Figure 6.3.

B-axis

α-axis

1

1
α-axis

B-axis

Figure 6.3: Cumulative distribution function F and its inverse.

Use

Aimms-supplied

function

As the previous paragraph indicated, the critical B̂ can be determined through

the inverse of the cumulative distribution function. Aimms supplies this func-

tion for a large number of distributions. For instance, when the underlying

distribution is normal with mean 0 and standard deviation 1, then the value of

B̂ can be found as follows:

B̂ = InverseCumulativeDistribution( Normal(0,1) ,α)

ExampleConsider the constraint
∑
j ajxj ≤ B with a stochastic right-hand side. Let

B = N(0,1) and α = 0.05. Then the value of B̂ based on the inverse cumulative

distribution is -1.645. By requiring that
∑
j ajxj ≤ −1.645, you make sure that

the solution xj is feasible for 95% of all instances of the random variable B.

Overview of

probabilistic

constraints

The following figure presents a graphical overview of the four linear proba-

bilistic constraints with stochastic right-hand sides, together with their deter-

ministic equivalent. The shaded areas correspond to the feasible region of∑
j∈J ajxj .
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Pr
[∑

j∈J ajxj ≤ B
]
≥ 1−α

∑
j∈J ajxj ≤ B̂

B̂
B-axis

1− α

Pr
[∑

j∈J ajxj ≤ B
]
≤ α

∑
j∈J ajxj ≥ B̂

B̂
B-axis

1− α

Pr
[∑

j∈J ajxj ≥ B
]
≥ 1−α

∑
j∈J ajxj ≥ B̂

B̂
B-axis

1− α

Pr
[∑

j∈J ajxj ≥ B
]
≤ α

∑
j∈J ajxj ≤ B̂

B̂
B-axis

1− α

Table 6.1: Overview of linear probabilistic constraints

6.7 Summary

This chapter presented a number of techniques to transform some special

models into conventional linear programming models. It was shown that some

curve fitting procedures can be modeled, and solved, as linear programming

models by reformulating the objective. A method to reformulate objectives

which incorporate absolute values was given. In addition, a trick was shown

to make it possible to incorporate a minimax objective in a linear program-

ming model. For the case of a fractional objective with linear constraints, such

as those that occur in financial applications, it was shown that these can be

transformed into linear programming models. A method was demonstrated

to specify a range constraint in a linear programming model. At the end of

this chapter, it was shown how to reformulate constraints with a stochastic

right-hand side to deterministic linear constraints.
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