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Chapter 1

Introduction

1.1 A Paradigm for Problem Solving
Decision Modeling involves the creation of mathematical models which repre-
sent problems faced by business management. To a lesser extent, it also involves
numerically solving these models. When a mathematical topic is needed which re-
quires more than first-year mathematics, it is extensively reviewed in this course.
Often, the numerical calculations can be left to a spreadsheet or other software
tools. If there’s a difficulty with this subject, it’s probably not the mathematics.

Instead, the difficulty is likely to be the building of the model which the math-
ematics seeks to solve. The important thing is always going from a problem de-
scription to a model for the problem. This is part of the paradigm of managerial
problem solving by mathematical analysis, which can be thought of being com-
posed of four phases:

1. problem definition

2. model building

3. solution

4. implementation.

When the fourth phase has been done, it is appropriate to ask whether or not it
addressed the original problem. Because we are working in an academic context,
we cannot observe the entire paradigm. The “problem” is not for us a real-world
observation, but instead it is a written description (a “word” or “story” problem).

1
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Also, we cannot implement the solutions. We are left with looking at the second
and third phases of the paradigm. This book heavily emphasizes the second phase,
though some simple solution methodologies are introduced. Most models fit into a
general class of models for which solution software has been written and is widely
available.

In the next section we will see a short example of the paradigm which evaluates
mobile telephone plans, but first we go through the basic concepts of spreadsheets.

1.2 Spreadsheets

1.2.1 Introduction
Often, spreadsheets are a good way to solve numerical problems. All spreadsheets
will have an array of rows labeled 1, 2, 3, and so on, and columns labeled A, B,
C, and so on. The intersection of a particular row and column is called a cell,
which is denoted by giving the column letter followed by the row number, e.g.
B5. By putting numbers and formulas into the cells, we can perform all sorts of
mathematical operations, ranging from simple addition, to optimization. Here is
what an array going from cell A1 to cell F10 (also denoted as A1:F10) looks like:

1

2

3

4

5

6

7

8

9

10

A B C D E F

A spreadsheet package comes as part of a set of software programs. The
dominant software is Microsoft Office 365 (for both Windows and Macintosh),
but there are others, both non-free and free. A review of several free alterna-
tives to Microsoft Office is available online.1 Despite the free competition, the

1See https://www.techradar.com/news/the-best-free-office-software.

https://www.techradar.com/news/the-best-free-office-software
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Excel spreadsheet program from Microsoft Office remains dominant. There are
several reasons for this: product quality, a need for absolute file compatibility,
and a need for features not found in some of the free programs. The creation of
spreadsheets in this document was done using the Windows version of Excel from
Microsoft Office 365. Readers who own the Apple Mac version will see some
minor differences. In what follows, the instructions assume the Windows oper-
ating system. Users of a Macintosh should consult https://sway.office.com/TLT-
kbLbBsVXZrX2.

What makes Microsoft Excel different from other spreadsheet packages is the
command structure which appears above the row of column letters. Each of the
tabs contains a large number of commands. Even for just the Home tab, there are
so many commands that the screen shot has been split into two parts:

https://sway.office.com/TLT-kbLbBsVXZrX2
https://sway.office.com/TLT-kbLbBsVXZrX2
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There is some commonality amongst all Office programs (Word, Access, etc.).
For example, in the very top row there is the Quick Access Toolbar near the left,
the Title bar in the centre, and the minimize/maximize/close buttons on the right.
Also, on the left edge of the second row, the File tab is common to all Office
programs. The File tab occupies the top-left position of what is called the Ribbon,
the rectangular area between the Title bar and Formula bar (the Formula bar is just
above the row of letters for the columns).

At the top of the Ribbon is the list of tabs. After the File tab, there are tabs
named Home, Insert, Page Layout, Formulas, Data, Review, View, and Acrobat.
To the right of the Acrobat tab help can be obtained by clicking on “Tell me what
you want to do ...”. The Home tab is the default when opening a file, and it is the
tab used most often. When a tab is clicked, a whole new set of commands becomes
available. There is only space here to consider a few of these. For more informa-
tion, there are free on-line tutorials, such as https://edu.gcfglobal.org/en/excel2016/.

To begin using Excel, we consider the four basic arithmetical operations. As
one would expect, we use + for addition and − for subtraction. Multiplication
uses the symbol ∗, which seems strange at first but it avoids confusing the standard
multiplication symbol × with the small letter x, or its capital, X. For the fourth
operation, which is division, there’s no ÷ symbol on the keyboard, and so we use
a forward slash / instead. For example, 2/5 means 2 divided by 5. These basic
expressions can be used to create a formula, which in Excel must begin with the
= symbol. For example, 3 + 2 ÷ 5 would be entered as =3+2/5.

https://edu.gcfglobal.org/en/excel2016/
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Powers are handled using the ˆ (caret) symbol.2 For example, to find 2 multi-
plied by itself five times (25), we enter =2ˆ5. In summary:

+ addition
− subtraction
∗ multiplication
/ division
ˆ powers

Spreadsheets contain hundreds of built-in functions which can be used to help
build formulas. They can be accessed from the Formulas tab, or simply be used
directly on the main part of the spreadsheet if the user already knows the function
and its syntax. Most users will memorize the function names for common tasks,
such as summing a column of numbers, but will refer to the Formulas tab to access
a function that is less familiar. Sometimes a formula only consists of the = symbol
followed by the name of the function (denoted in this document using capitals) and
its argument enclosed in brackets. Of course, a formula can also be complex using
a combination of operators (+, −, and so on) and several functions.

As an example of a simple formula, to sum an array of numbers in say C3:C8,
we use the SUM function, and the full writing of the formula is:

=SUM(C3:C8)

Normally, one would want the sum to appear in the same column below the
other numbers, in cell C9 or C10, but it could be placed anywhere on the spread-
sheet. The AVERAGE, MIN, and MAX functions are as follows. If we want
the average of the numbers, this is =AVERAGE(C3:C8) as one might expect. The
smallest number in the range is =MIN(C3:C8), and the largest is =MAX(C3:C8).

The default number formatting on Excel uses scientific notation to display
very small or very large numbers. For example, it might calculate a number which
theoretically should be zero, but due to a tiny bit of numerical error it is computed
as −0.0000000000018. Excel will display this number as −1.8E−12. If desired,
the formatting can be set to override the default setting.

1.2.2 Example – Calculating Students’ Final Marks
There are many students in a class, and the professor needs to find the average
mark on each test/exam, and wishes to compute each student’s mark. There are

2The caret symbol, found above the number 6, is also called a circumflex. However, technically
a circumflex is raised so that it can be put above something, such as in the French word fête.
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two tests worth 25% of the final mark, and a final examination worth 50%. How-
ever, if and only if it helps the student, the final examination for that student will
be worth 100%. The computation of the grade will compute a mark such as 68.7,
which will have to be rounded to the nearest integer.

In order to save space, we will illustrate this example using just the data for
six students. The raw (fictitious) data are:

1
2
3
4
5
6
7
8
9
10

A B C D E F
Name Test 1 Test 2 Exam

Aylward, Susan 84 75 82
Chang, Wi 62 69 63
Murphy, Joseph 36 51 47
Noonan, Anne 55 46 49
Shawanda, Janet 76 81 77
Wilson, John 92 88 89

Column A gives a list of students ordered alphabetically by surname. In order
to make each student’s surname/given name fit the space, we had to make column
A bigger than its default value. We can do this visually by using the mouse to
drag the line between columns A and B to the right. While this visual method will
change the column width for all the rows, we would have to scroll down through
all rows to verify that we made the column wide enough. Instead of using this
visual method, all we need do is double-click on the line between A and B. The
double-clicking is a shortcut to replace going to the right-hand side of the Ribbon
(in the Home tab), clicking on Format above the word Cells, and then under Cell
Size, clicking on AutoFit Column Width.

Now we will add Raw Mark and Final Mark titles to columns E and F respec-
tively. When inputting formulas, we try to minimize the number of times that we
enter formulas by hand; we will use the spreadsheet’s ability to copy cells as much
as possible. Therefore, in row 3 of column E, we enter a formula which will be
copied into the other cells in column E. The user can specify either absolute or
relative cell referencing. In absolute cell referencing, a dollar sign in front of a
column letter in a formula freezes the column, a dollar sign in front of the row
number freezes the row, and dollar signs in front of both freezes both the row and
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the column. We will see an example of this later. Here, however, we want relative
cell referencing. In relative cell referencing, moving a column to the right incre-
ments the column letter in a formula, and moving downwards increments the row
number.

In cell E3, we need to calculate the student’s mark based on the numbers in
cells B3, C3, and D3. If the computation were to be based solely on a 25/25/50
apportionment, the formula would be easy. On a spreadsheet, multiplication uses
an asterisk, so for example 25% of the number in cell B3 is 0.25*B3, and the total
raw mark would be:

=0.25*B3+0.25*C3+0.5*D3

However, only the final exam will count if and only if it is to the student’s advan-
tage. Hence we want either the formula above, or the number in D3, whichever is
higher. Using the MAX function the formula to be placed in cell E3 for the raw
mark which reflects whichever method of computation is better is:

=MAX(0.25*B3+0.25*C3+0.5*D3,D3)

The ROUND function will round any number to a specified number of digits
to the right of the decimal place. Since we want an integer, the specified number of
digits is 0. In cell F3, we type =ROUND(E3,0). As an aside, we note that the INT
command is not what we want here; it will always round down to the nearest in-
teger. However, using =INT(E3+0.5) does do the same thing as =ROUND(E3,0).

We now need to copy cells E3 and F3 into rows 4 to 8 of columns E and F.
The newer “drag and drop” method is:

1. Use the left button of the mouse to click on cell E3.

2. Keeping the left button down, drag the mouse over to cell F3, and then
release the left button.

3. Use the mouse to place the cursor at the bottom-right hand corner of the
range. It will change from a thick white cross to a thin black one.

4. Drag the cursor to the bottom-right hand corner of the range to be filled in
(F8 in this example) and then release the button.

The traditional (but slower) way to do this is:

1. Use the left button of the mouse to click on cell E3.
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2. Keeping the left button down, drag the mouse over to cell F3, and then
release the left button.

3. Use the mouse to place the cursor at the bottom-right hand corner of the
range. Click on the right button of the mouse. A vertical menu with the
word Cut at the top and Hyperlink at the bottom will appear.

4. Move the mouse to the word Copy, and then click on the left button. A
blinking edge will appear around the range E3:F3.

5. Click on the left button on E3, and drag across to F3 and down to F8, and
release the left button. Cell E3 will be white; the rest of the range E2:F8
will be light grey.

6. Press the Enter key.

In cell E4 the number 64.25 will appear. Clicking on this cell gives the cell’s
formula in the Formula Bar just below the Ribbon. Here we see the formula
=MAX(0.25*B4+0.25*C4+0.5*D4,D4). In copying cell E3 above it, the spread-
sheet updated B3 to B4, C3 to C4, and D3 to D4.

In row 10, we write the word Average in column A, and then use the next five
cells in row 10 for the averages of the numbers in columns B through F inclusive.
The word Average in cell A10 is just a label; Excel doesn’t use it as a command.
For this, we need to use the built-in AVERAGE command. The average of the
numbers in rows 3 to 8 inclusive of column B is =AVERAGE(B3:B8). This can
be entered by typing this out, or by typing =AVERAGE( and using the mouse to
click on cell B3 and dragging it down to cell B8, and then typing the right bracket.

Using the procedure described above, we copy the contents of cell B8 into
the range B8:F8. We have done what we set out to accomplish, but we can also
improve the visual appearance of the spreadsheet. In the graphic below, we have
done the following on the Home tab:

1. The titles have been bolded. We click on the relevant cells, and then click
on the B command located on the ribbon below the word Home.

2. Some of the cells have been given borders. The set of commands to create
borders is located a few centimetres to the right of the B command.

3. The cells which contain the titles have been coloured yellow. The tilting
paint can to the right of the Borders command can be clicked to reveal a
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palette of colour choices. Yellow is one of the standard colours at the bot-
tom.

1
2
3
4
5
6
7
8
9
10

A B C D E F
Name Test 1 Test 2 Exam Raw Final 

Mark Mark
Aylward, Susan 84 75 82 82 82
Chang, Wi 62 69 63 64.25 64
Murphy, Joseph 36 51 47 47 47
Noonan, Anne 55 46 49 49.75 50
Shawanda, Janet 76 81 77 77.75 78
Wilson, John 92 88 89 89.5 90

Average 67.5 68.3333 67.8333 68.375 68.5

The formula for the active cell is always visible in the Formula Bar, but some-
times we want to see all the formulas without having to see them one by one. This
is accomplished by holding the Control key (labeled Ctrl at the bottom-left of the
keyboard) down, and then clicking on the key below the Escape key that has a tilde
(˜) on top and an single left quotation mark (‘) symbol underneath. Equivalently,
this can be done under Formulas/Show Formulas. What we obtain by doing this
is called formula view. Repeating this procedure brings the user back to the usual
numeric display, called normal view.

In this example Columns E and F need to be widened to see the entire formu-
las. Doing this, they appear as:

1
2
3
4
5
6
7
8
9
10

E F
Raw Final 
Mark Mark
=MAX(0.25*B3+0.25*C3+0.5*D3,D3) =ROUND(E3,0)
=MAX(0.25*B4+0.25*C4+0.5*D4,D4) =ROUND(E4,0)
=MAX(0.25*B5+0.25*C5+0.5*D5,D5) =ROUND(E5,0)
=MAX(0.25*B6+0.25*C6+0.5*D6,D6) =ROUND(E6,0)
=MAX(0.25*B7+0.25*C7+0.5*D7,D7) =ROUND(E7,0)
=MAX(0.25*B8+0.25*C8+0.5*D8,D8) =ROUND(E8,0)

=AVERAGE(E3:E8) =AVERAGE(F3:F8)
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1.2.3 Putting Excel files into other Documents

One advantage of using Microsoft Office is that each of the tools, Excel, Word,
PowerPoint, etc. work well together. If a Word document is being written, and if
we want to imbed the spreadsheet used above, all we have to do is go to the Excel
spreadsheet, click on cell A1 and drag the mouse to cell F10, press the Control key
down, and then click on the key for letter C. We can now go to a Word document,
press the Control key down, and then click on the key for letter V, and a picture
of the spreadsheet will appear. There are some limitations of this click-and-paste
method, however. The gridlines will not appear, and the row numbers and column
letters will not appear.

At the other extreme, if we want to see everything as it appears on the screen,
we can click on the Print Screen key. Doing this saves the image on the screen to
the Clipboard. Going to Word and using Control V will make the picture appear
in the Word document.

Sometimes we want an image which is in-between the two choices above, i.e.
we want the main body of the spreadsheet but with the gridlines and with the row
and column headings as well. With Adobe Acrobat or similar pdf-creator installed
we can do this as follows:

1. Click on the File tab in Excel, and then click on Print.

2. Set the Printer to Adobe PDF.

3. Under Settings one usually wants Print Selection.

4. At the bottom click on Page Setup, and when the dialog box appears click
on Sheet.

5. Under Print, click on the boxes for Gridlines and Row and Column Head-
ings. Click on OK to close the dialog box.

6. When one clicks on the square labeled Print at the top, a pdf file is created,
and the user is prompted for a filename.

Note that this procedure causes nothing to be sent to a physical printer. The pdf
file can be imported into other documents, though cropping the image first using
Adobe Acrobat or a similar product would probably be advisable.
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1.2.4 Further Excel Functions
So far, we have seen five arithmetical operators (+, −, ∗, /, and ˆ ) and the fol-
lowing functions: AVERAGE, INT, MAX, MIN, ROUND, and SUM. Here are
some more functions which are quite important.

The IF function

An IF function has three parts to its argument. The first is a question, which Excel
needs to evaluate to see if it’s true or false. The formal name for such a question
is a “logical test”. If it’s true, then Excel goes to the second part of the argument
and follows the instruction given there; if it’s false, then Excel goes to the third
part of the argument and follows the instruction given there.

In the logical test we might want to know if the value in one particular cell is
less than or equal to the value in another cell. Because there is no ≤ symbol on
the computer keyboard, we would use <= instead. Similarly, >= means ≥.

Here’s a simple example. We want there to be a 1 in cell B1 if the number in
cell A1 is 30 or more, and for there to be a −1 in cell B1 otherwise. We make cell
B1 active and type =IF(A1>=30,1,−1). If we type 5 into cell A1, we obtain −1
in cell B1. If we type 34 in cell A1 we obtain 1 in cell B1.3

The expressions in each of the three sections can be much more complicated
than this simple example. Indeed, the second and third parts can contain the IF
function, which is called a “nested IF”. Nesting can be up to 64 levels deep.

The IFS function

In 2016, a new function named IFS was introduced into Excel which can replace
a nested IF. An example which is solved using both the traditional nested IF func-
tion, and the new IFS function, appears on page 21.

The SUMPRODUCT function

We often need to find what is mathematically called the inner product of two rows,
more commonly referred to as the “dot product”. Suppose we buy 10 apples, 12
oranges, and 8 bananas, each of which cost $0.55, $0.50, and $0.30 respectively.
Hence we spend 10(0.55)+12(0.50)+8(0.30) = $13.90 in total.

3If we type 29.9999999999 in cell A1, then depending on the formatting we might see 30 in cell
A1, but B1 will be computed as −1 because the true value of 29.9999999999 is in the computer’s
memory.
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On a spreadsheet we can put the per-unit prices into one row, and the per-unit
quantities in another. Let us suppose that we put the former in the range C2:E2,
and the latter in the range C3:E3. The brute-force way to find the total cost for
any set of numbers would be to compute:

=C2*C3+D2*D3+E2*E3

With only three items, this works well enough, but it would be quite tiresome if
we had say twenty items. This is where the SUMPRODUCT function is useful.
It finds the dot product where the argument is range1,range2. For this example,
the expression is:

=SUMPRODUCT(C2:E2,C3:E3)

Here this is shown on a spreadsheet in Formula view:

1

2

3

A B C D E

Total Cost Apples Oranges Bananas

Price/Unit 0.55 0.5 0.3

=SUMPRODUCT(C2:E2,C3:E3) Quantity 10 12 8

Other Functions

Other Excel functions used in this book or needed for solving the end-of-chapter
problems are as follows:

Absolute Value The ABS function is used to find the absolute value of its argu-
ment. For example, =ABS(C2) in cell D2, where the number in C2 is−230, puts
230 into cell D2.

Powers to the base e To find e (2.71828...) raised to an exponent we use the
EXP function. For example to find e2 we use =EXP(2) to obtain 7.389056099.

Square Root The SQRT function is used to find the positive square root of a
number. For example, =SQRT(B11) in cell A7, where the number in cell B11 is
25, puts a 5 into cell A7. If the number in cell B11 is negative, an error message
will appear in cell A7.
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1.2.5 Excel Array Formulas
Array formulas in Excel allow for multiple calculations on one or more of the
cells in an array. Array formulas require simultaneous use of the Control, Shift,
and Enter keys.

Matrix Multiplication

A matrix is a rectangular array of numbers, with m rows and n columns. The
product of two matrices is defined if and only if the number of columns of the first
matrix equals the number of rows of the second matrix. The number of rows of the
product matrix is the same as that of the first matrix, and the number of columns
is the same as that of the second matrix. Thinking of each row of the first matrix
as a row vector, and each column of the second matrix as a column vector, each
cell of the product matrix (if defined) is computed as the inner product of these
vectors. Where C = AB,

ci j = row i of A · column j of B

For example, suppose that we are given:

A =

[
3 6 −4
8 −2 11

]
B =

 5 2 0 −3
8 7 1 12

13 −8 6 5


The product of a 2×3 matrix times a 3×4 matrix is defined, and C will be 2×4.
Hence eight cells need to be calculated. For example, c1,1 is row 1 of A · column
1 of B, which is 3(5)+6(8)+(−4)13 = 11. Cell c1,2 is row 1 of A · column 2 of
B, which is 3(2)+6(7)+(−4)(−8) = 80. Continuing in this manner we obtain:

C =

[
11 80 −18 43

167 −86 64 7

]
While small examples can be done easily by hand, for larger examples matrix mul-
tiplication is tedious and easily prone to error. For such examples it is advisable
to use a spreadsheet.

The built-in function for matrix multiplication called MMULT. Here is how
to solve this example using Excel.

1. Enter the data. For example, we could put A into the range A1:C2, and B
into the range E1:H3.
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2. Reserve space for the product matrix. For this example, we need 2 rows and
4 columns; we will use range A5:D6. To do this we click on cell A5, and
then drag the mouse so that the range A5:D6 (except A5 itself) is shaded
medium grey.

3. Enter the formula which calculates the product of the matrix in range A1:C2
with that of the matrix in range E1:H3. In cell A5 we write:

=MMULT(A1:C2,E1:H3)

The procedure is not as simple as hitting the Enter key. Press the Control
key, and keep it held down, press the Shift key, and keep it held down, and
then press the Enter key.

After step 3, the solution will appear in the range A5:D6. If the requested matrix
multiplication is not defined, the spreadsheet will give an error message.

The Transpose of a Matrix

For every matrix Am×n there is a transpose matrix denoted as AT
n×m. The numbers

in the first row of AT come from the numbers in the first column of A. Similarly,
the second row of AT comes from the second column of A, and so on, with finally
row n of AT coming from column n of A.

For example:

A =

[
2 1 −5
8 9 3

]
AT =

 2 8
1 9
−5 3


Note that the transpose of the transpose is the original matrix.(

AT)T
= A

It is easy enough to do the transpose operation by hand, but it is also available
as a spreadsheet function called TRANSPOSE.

1. Enter the data. For example, we could put A into the range A1:C2.

2. Reserve space for the transpose matrix. For this example, we need 3 rows
and 2 columns; we will use range E1:F3. To do this we click on cell E1,
and then drag the mouse so that the range E1:F3 (except E1 itself) is shaded
medium grey.
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3. Enter the formula which calculates the transpose of the matrix in range
A1:C2. In cell E1 we write:

=TRANSPOSE(A1:C2)

Press the Control key, and keep it held down, press the Shift key, and keep
it held down, and then press the Enter key.

After step 3, the solution will appear in the range E1:F3. The TRANSPOSE
function is described further in Chapter 5.

The Inverse of a Matrix (Optional)

When a matrix has the same number of rows and columns (i.e m = n), it is said
to be a square matrix of order n. A special kind of square matrix is the identity
matrix, denoted as I. An identity matrix has 1’s on the main diagonal, and 0’s
everywhere else. To illustrate this, the first three identity matrices are:

I1 = [1] I2 =

[
1 0
0 1

]
I3 =

 1 0 0
0 1 0
0 0 1


A square matrix A might have an inverse matrix, denoted as A−1, such that:

A A−1 = I and A−1A = I

A non-square matrix never has an inverse, and not all square matrices have in-
verses.

There is a formula for finding the inverse (if it exists) of a square matrix of
order 2. However, finding the inverse of square matrix of order 3 by hand cal-
culations becomes very tedious. On Excel, the MINVERSE function is used to
perform matrix inversion. We now use it to invert the following matrix:

A =

 7 1 5
−2 8 3
0.1 4 6


1. Enter the data. For example, we could put A into the range A1:C3.

2. Reserve space for the inverse matrix. For this example, we need 3 rows and
3 columns; we will use range E1:G3. To do this we click on cell E1, and
then drag the mouse so that the range E1:G3 (except E1 itself) is shaded
medium grey.
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3. Enter the formula which calculates the inverse of the matrix in range A1:C3.
In cell E1 we write:

=MINVERSE(A1:C3)

Press the Control key, and keep it held down, press the Shift key, and keep
it held down, and then press the Enter key.

After step 3, the solution will appear in the range E1:G3. If no inverse matrix
exists, then NUM! will appear in each cell of the matrix. The inverse matrix is:

A−1 =

 0.163414 0.06355 −0.16795
0.055833 0.188379 −0.14072
−0.03995 −0.12665 0.263277


Solving Linear Equations (Optional)

Here is how to solve a system of linear equations using Excel:

1. Put the equations into the form Ax = b.

2. Use the MINVERSE function to try to find A−1. There is a unique solution
for x if and only if the inverse matrix exists.

3. If the inverse exists use the MMULT function to compute x = A−1 b.

We wish to solve the following linear system.

3X1 +2X2 +7X3 = 53
5X1−4X2 +8X3 = 26

6X1 +10X3 = 62

Putting it into matrix form we obtain: 3 2 7
5 −4 8
6 0 10

 X1
X2
X3

 =

 53
26
62


If the inverse exists, we need to find X1

X2
X3

 =

 3 2 7
5 −4 8
6 0 10

−1 53
26
62
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Using the Excel MINVERSE function to perform the matrix inversion we obtain: 3 2 7
5 −4 8
6 0 10

−1

=

 −0.909091 −0.454545 1.00
−0.045455 −0.272727 0.25

0.545455 0.272727 −0.50


Therefore we wish to solve: X1

X2
X3

 =

 −0.909091 −0.454545 1.00
−0.045455 −0.272727 0.25

0.545455 0.272727 −0.50

 53
26
62


Using the Excel MMULT function to multiply the two matrices we obtain: X1

X2
X3

 =

 2
6
5


The unique solution is X1 = 2, X2 = 6, and X3 = 5.

1.3 Example – Mobile Telephone Plans
We use this example as a way to illustrate the paradigm of decision modeling, and
to illustrate the use of spreadsheets.

1.3.1 Problem Identification
Alison has decided to buy a mobile telephone, partly for safety in case of a break-
down in an isolated area, but also because of the convenience that it will provide.
She’s not concerned about the initial cost of the telephone itself, especially when
some mobile telephone companies give the phones away in order to attract busi-
ness. However, she is concerned about the monthly operating cost, especially
since she would use the phone almost entirely during working hours Monday to
Friday. Some of her calls will be to long-distance (but in-the-country) destina-
tions. In addition to voice calls, she also wants to be able to send and receive text
messages. She is not interested in using a mobile phone to connect to the Internet.

Going to a mobile phone company store, she finds a brochure that gives details
about eight plans. She easily narrows it down to two plans, because the cheapest
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of the eight plans does not include text messaging, and the five most expensive
plans include data (i.e. connecting to the Internet) that she doesn’t wish to pay for.

These two plans both offer unlimited text, picture, and video messages. Also,
they both offer unlimited local calls in the evenings and on weekends. The plans
differ in price, and in the number of Monday to Friday daytime local calls that are
included in the price. One plan costs $35 per month and includes 200 minutes per
month of local calls, while the other costs $42 per month but includes 1000 local
minutes. For either plan, the indicated number of local minutes can be made into
anywhere (local or long-distance) minutes for an extra $10 per month. For either
plan, extra minutes (local or long-distance) cost $0.50 per minute.

Because of the all-or-nothing nature of the base costs, there are effectively four
plans of interest:

1. Plan 1 has 200 local minutes and costs $35 per month.

2. Plan 2 has 1000 local minutes and costs $42 per month.

3. Plan 3 has 200 anywhere minutes and costs $35 + $10 = $45 per month.

4. Plan 4 has 1000 anywhere minutes and costs $42 + $10 = $52 per month.

In addition, for all four plans, extra minutes (local or long-distance) cost 50
cents per minute.

Suppose that Alison wishes to make 140 minutes of daytime weekday local
calls, and 80 minutes of long-distance calls. We will build a spreadsheet to figure
out the best plan for any amount of local and long-distance minutes, but with just
140 and 80 in mind, we can easily work out the cost of each plan by hand.

Using Plan 1, which has a base cost $35, all her local calls are “free”, but she
pays an extra 80 @ $0.50 = $40 in long-distance charges, for a total of $75. Plan
2 only makes her worse off; she’ll pay $42 + $40 = $82. Plan 3 with a base cost
of $45 covers her for 200 of the 220 minutes, so she pays an extra 20 @ $0.50 =
$10 for a total of $55. Finally for $52 Plan 4 covers all her calls. Clearly, based
on the stated intended usage, Plan 4, which gives 1000 anywhere minutes for $52
per month, is the cheapest plan.

Now instead of speaking of specific numbers like 140 local minutes and 80
long-distance minutes, let’s suppose that she expects to make a minutes of local
calls, and b minutes of long-distance calls. Here, a and b are not variables, but
rather they are parameters, that is, they are fixed for a given example, but can
change from one example to another. Now let’s work out the total cost for each
plan as a function of a and b.
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Plan 1 If a≤ 200, the cost will be $35+$0.50b. However, if a > 200, then she
must pay an additional $0.50(a−200). We can put these expressions together into
one, by using a finding the maximum of a−200 and 0. The total cost is:

35+0.5max{a−200,0}+0.5b

Equivalently, we can write:

35+0.5max{a+b−200,b}

Plan 2 It’s easier to find the cost if we simply look at what is different from Plan
1. The base cost is $42, and the plan limit for local calls is 1000 minutes, hence
the cost is:

42+0.5max{a+b−1000,b}

Plan 3 In this plan as long as a+b doesn’t exceed 200 there is no charge beyond
the basic $45; there is a 50 cent per minute charge for minutes over this limit. The
total cost is:

45+0.5max{a+b−200,0}

Plan 4 This is similar to Plan 3, but with a base charge of $52, and 1000 any-
where minutes. The total cost as a function of a and b is:

52+0.5max{a+b−1000,0}

The objective is of course cost minimization. For any particular a and b, we wish
to:

min{35+0.5max{a+b−200,b};42+0.5max{a+b−1000,b};
45+0.5max{a+b−200,0};52+0.5max{a+b−1000,0}}

1.3.2 Model Solution
What we have done so far is make an algebraic model of the problem. Because
this problem with specific numbers a = 140 and b = 80 is simple, we solved it by
hand. However, with the costs of the plans now in terms of a local minutes and
b long-distance minutes, it is useful to make a spreadsheet model to calculate the
cost of each plan for several values of a and b.
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In the model below we start with the values that we considered earlier, in
which a = 140 and b = 80. The numbers in cell range F6:F9 and cell H8 are
calculated by Excel; the other numbers are input data. Also, Excel determines
and then shows the best plan in cell H9. Note that the input data has not been
embedded in the spreadsheet formulas. By doing it as shown, if a change needs to
be made, for example, suppose that the extra-minute charge increases to 60 cents
per minute, then all we need to do is change one cell (cell H3 in the example)
from $0.50 to $0.60. Also, doing it this way means that the cost per minute is
transparent to anyone seeing the spreadsheet.

1

2

3

4

5

6

7

8

9

A B C D E F G H

Choosing a Mobile Telephone Plan

Local (a) 140 Long‐distance (b) 80 $0.50

Plan  Base Cost Minutes Total Cost

1 $35.00 local 200 $75.00 Best

2 $42.00 local 1000 $82.00 Plan 

3 $45.00 anywhere 200 $55.00 $52.00

4 $52.00 anywhere 1000 $52.00 Plan 4

The following graphic shows one way of writing the required formula for each
plan. The formula was written out in full for cell F6 as shown. Because the
formula has a slightly different form for Plans 3 and 4, we could not copy F6 into
F6:F9. Instead, F6 was copied into cells F6:F8. Then, the formula is cell F8 was
modified at the end, replacing $F$3 with 0. The modified cell F8 was then copied
into F8:F9.

5

6

7

8

9

F

Total Cost

=B6+$H$3*MAX($C$3+$F$3‐D6,$F$3)

=B7+$H$3*MAX($C$3+$F$3‐D7,$F$3)

=B8+$H$3*MAX($C$3+$F$3‐D8,0)

=B9+$H$3*MAX($C$3+$F$3‐D9,0)

To have Excel show the best plan, we have used a nested IF statement to figure
out which plan is associated with the least cost. By putting the result of the IF
statement in quotation marks, Excel will show verbatim what is inside the marks.
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6

7

8

9

H

Best

Plan 

=MIN(F6:F9)

=IF(F6<=H8,"Plan 1",IF(F7<=H8,"Plan 2",IF(F8<=H8,"Plan 3","Plan 4")))

The nested IF is compatible with all versions of Excel. In 2016, a new IFS
function was introduced. Using this function we can accomplish what the nested
IF does. The syntax for this example is:

9
H

=IFS(F6<=H8,"Plan 1",F7<=H8,"Plan 2",F8<=H8,"Plan 3",F9<=H8,"Plan 4")

The developer of the model, whether using a calculator or a spreadsheet, must
make the recommendation clear. The customer of the model (in this case, Alison)
might not be familiar with spreadsheets, so the emphasis should be on giving the
recommendation:

Recommendation

Based on expecting to need 140 weekday daytime local minutes, and 80 long-
distance minutes, Alison should sign up for Plan 4 ($52 for 1000 anywhere min-
utes), at a cost of $52 per month.

Changing a and b

Having set up the spreadsheet, it will easily calculate whatever numbers we give
it. Suppose that we change a to 30 minutes and b to 70 minutes. In an instant the
spreadsheet updates and we see that the least-cost plan now is Plan 3 at a cost of
$45.00.
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1

2

3

4

5

6

7

8

9

A B C D E F G H

Choosing a Mobile Telephone Plan

Local (a) 30 Long‐distance (b) 70 $0.50

Plan  Base Cost Minutes Total Cost

1 $35.00 local 200 $70.00 Best

2 $42.00 local 1000 $77.00 Plan 

3 $45.00 anywhere 200 $45.00 $45.00

4 $52.00 anywhere 1000 $52.00 Plan 3

By playing around with the two input parameters, we can see the minimal
cost solution for any pair (a,b). This is a primitive form of sensitivity analysis,
in which a parameter of the model is varied to examine the effect (if any) on the
recommended solution.

Implementation

Models only approximate reality. Sometimes, things can be left out because they
don’t affect the choice. For example, we have ignored taxes. Whatever the tax
rate, the cheapest alternative is still the cheapest after taxes have been included.
On the other hand, a model cannot capture every nuance, even if it might change
the optimal choice. It may be that some plans have extra features like call for-
warding, but some plans do not. If we try to capture this in the model, it will
quickly become very big. For this reason, the recommended solution is only opti-
mal for the model, and is not necessarily best at solving the original problem. To
complete the paradigm, we should go back to Alison to see if she is happy with
the recommended plan.

Commentary

The four phases of the management science paradigm are not totally distinct.
When we had completed the algebraic model, we saw that it was useful to build
another model, this one using a spreadsheet, so that we could solve it.

This model only involved cost, so we found the alternative with the minimum
cost. In many management science examples, however, we seek the alternative
with the highest profit.
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1.4 Break-Even Analysis

Introduction

Break-even analysis compares two alternatives to tell us when we should switch
from one to the other.

Example 1 A company is not currently making any umbrellas, but believes that
with a capital expenditure of $12,000 they can pay for the required investment in
machinery and training. With this investment made, they could produce umbrellas
at a marginal cost of $8.00 each which they would sell to a wholesaler for $10.00
each.

If they make and sell x umbrellas, their profit will be 10x− 8x− 12,000, i.e.
2x−12,000. Not making the investment has a profit of 0. They are better off mak-
ing the investment if 2x−12,000 > 0, better off doing nothing if 2x−12,000 < 0,
and they are indifferent if 2x− 12,000 = 0. This latter case gives the value of x
which is the break-even point (BEP). Solving we obtain BEP = 6,000 umbrellas.

Example 2 A business takes all its photocopying needs to a nearby copy service,
which charges 10 cents per page. They are considering renting their own machine
for $420 per month, which would operate with a variable cost of only 4 cents per
page.

Based on a volume of x copies per month Alternative 1 (continue to use the
copy service) would cost 0.1x, while Alternative 2 (rent their own photocopying
machine) would cost 420+0.04x. Break-even analysis sets the two costs equal to
each other to determine the break-even quantity:

0.1x = 420+0.04x
0.06x = 420

x = 7000

Hence at the break-even point of BEP = 7000 copies per month, the company
would be indifferent between the two alternatives. For x < 7000, they should
continue to go to the copy service, and if x > 7000, they should rent their own
photocopy machine.
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Mobile Phone Plans

We can apply break-even analysis to the mobile telephone plan problem, but there
are two complications. The first is that some of the expressions use a MAX func-
tion. The second is that there are four plans, but break-even analysis compares one
alternative with another one. To compare each plan with each other plan would
require six comparisons (1 and 2, 1 and 3, 1 and 4, 2 and 3, 2 and 4, and 3 and 4).
We shall just do the first two of these six comparisons.

Plan 1 vs. Plan 2 Plans 1 and 2 have the same cost when:

35+0.5max{a+b−200,b}= 42+0.5max{a+b−1000,b}

While we could just find the break-even point, a more useful analysis finds when
one plan is better than the other. Plan 1 is better than (i.e. cheaper than) Plan 2
when:

35+0.5max{a+b−200,b} ≤ 42+0.5max{a+b−1000,b}

Subtracting 35 from each side gives us:

0.5max{a+b−200,b} ≤ 7+0.5max{a+b−1000,b}

Multiplying both sides by 2 we obtain:

max{a+b−200,b} ≤ 14+max{a+b−1000,b}

We can extract b from both parts of the max expression, to give :

max{a−200,0}+b≤ 14+max{a−1000,0}+b

Now we subtract b from both sides to obtain:

max{a−200,0} ≤ 14+max{a−1000,0}

Case 1 Suppose that a ≤ 200. Hence a− 200 ≤ 0, and therefore max{a−
200,0} = 0. Also, max{a− 1000,0} = 0. Therefore max{a− 200,0} ≤ 14+
max{a− 1000,0} reduces to 0 ≤ 14+ 0, which is always true. This means that
whenever a≤ 200, Plan 1 is better than Plan 2.
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Case 2 Now suppose that a≥ 1000. The condition now requires that:

a−200≤ 14+a−1000

This reduces to 800≤ 14, which is a contradiction. This means that, if a≥ 1000,
Plan 1 is never better than Plan 2.

Case 3 The only other possibility is 200 ≤ a ≤ 1000. With this assumption,
max{a−200,0} ≤ 14+max{a−1000,0} simplifies to:

a−200≤ 14+0

i.e. a≤ 214.

Overall Hence, Plan 1 is preferred over Plan 2 if a ≤ 214, Plan 2 is preferred
over Plan 1 if a≥ 214. and when a = 214 Plans 1 and 2 cost the same. Note that
b affects the cost of both plans, but does so equally, and hence b does not help
determine the switchover point.

Part of the region of infinite size where Plan 1 is better than Plan 2 can be
shown graphically, putting a on the horizontal axis, and b on the vertical axis.

0 50 100 150 200 250
a

300
0

50
b Plan 1 is cheaper than Plan 2

Plan 1 vs. Plan 3 Plan 1 is better (i.e. cheaper) than Plan 3 when:

35+0.5max{a+b−200,b} ≤ 45+0.5max{a+b−200,0}

First, we subtract 35 from both sides of the inequality:

0.5max{a+b−200,b} ≤ 10+0.5max{a+b−200,0}

Now we multiply both sides by 2:

max{a+b−200,b} ≤ 20+max{a+b−200,0}
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Case 1 Suppose that a+b−200≤ 0, i.e. a+b≤ 200. The expression simplifies
to b≤ 20.

Case 2 Now suppose that a+b−200≥ b, i.e. a≥ 200. The expression simpli-
fies to:

a+b−200≤ 20+a+b−200

which further simplifies to 0 ≤ 20, which is always true. In other words, when
a≥ 200, Plan 1 is always better than Plan 3.

Case 3 The only other possibility is 0≤ a+b−200≤ b, i.e. a≤ 200. With this
assumption we obtain:

b≤ 20+a+b−200

which simplifies to a≥ 180.

Overall Taking these cases into consideration, Plan 1 is better than Plan 3 when-
ever a ≥ 180, or b ≤ 20. Another way of saying this is that Plan 3 is better than
Plan 1 provided that both a≤ 180 and b≥ 20. The graph of the region where Plan
1 is better than Plan 3 is:

0 50 100 150 200 250
a

300
0

50
b

Plan 1 is cheaper than Plan 3

1.5 Why Decision Modeling is Important

1.5.1 Using Resources Efficiently

Decision Modeling is part of a wider subject called Operational Research in
Canada, or Operations Research in the U.S.A. (O.R. is the initialism for both).
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Because of its heritage from many sources,4 O.R. is also called Management Sci-
ence, or Decision Analysis. There’s a new word being bandied about, and that
is Analytics. As catchy as that word is, it operates more at the boundary of O.R.
and Statistics, so this course adopted the Decision Modeling name. This course
deemphasizes problem solution, leaving difficult problems to the computer, so we
didn’t call it operational research. However, a student can take electives to become
proficient in O.R.

O.R. is about applying mathematical techniques to use resources more effi-
ciently. Suppose that a truck has to leave a warehouse, go to customers 1, 2, and
3, and then return to the warehouse. Suppose that the distance in kilometres from
the warehouse to 1, 2, and 3, is 3.5, 4.5, and 5.5 respectively, 1 to 2 and 3 is 4.0
and 4.4 respectively, and 2 to 3 is 2.7, and all distances are symmetric (e.g. 1 to
the warehouse is 3.5 km). Here are these distances written in tabular form:

W 1 2 3
W — 3.5 4.5 5.5
1 3.5 — 4.0 4.4
2 4.5 4.0 — 2.7
3 5.5 4.4 2.7 —

There are only six (= 3×2×1) possible routes.5 One way to route the truck
would be to simply go from the warehouse to 1, then to 2, then to 3, and then back
to the warehouse, for a total distance of 3.5+4.0+2.7+5.5= 15.7 km. However,
we can find a better way (i.e. lower total distance travelled) by inspection, or if
need be, by a complete enumeration of all six routes. Doing this we can see that
the best way to route the truck is to go from the warehouse to 1, then to 3, then to
2, then back to the warehouse, for a total distance of 3.5+4.4+2.7+4.5 = 15.1
km. The best solution of 15.1 km is 0.6 km lower (or about 3.8% lower) than the
15.7 km solution. The truck saves on fuel and wear-and-tear. Also, it might make
the truck driver more productive because the truck will return to the warehouse a
bit sooner. The company is staying competitive by using its resources wisely.

In a real-life situation such an example might be complicated by issues such as
one-way streets, or difficult left-turns, but these things just make the distance table
non-symmetric. However, one thing that does make things more difficult is to

4For an overview of how OR came about, see Saul I. Gass, 2011, Model World: On the Evolu-
tion of Operations Research, Interfaces, 41, No. 4, pp. 389-393.

5Because of the symmetry of the distance table, only three (half of six) routes need to be
evaluated.
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increase the number of customers. This example is a type of travelling salesman
problem, which has been well-studied.6 In general, where there is a warehouse
with deliveries to be made to n customers, there are n factorial (written as n!)
ways to route the truck.7 Complete enumeration of n! routes is out of the question
when n is large. Instead, we need to make a mathematical model and then solve it
with an intelligent algorithm; even so, this can be still be difficult to do.

Even for the vast majority of readers of this document who will never become
O.R. professionals, there is a great deal to be gained from studying decision mod-
eling, just as accounting majors are helped by studying marketing, and marketing
majors are helped by knowing something about accounting. Firstly, it is of great
benefit just to be aware that something can be improved, for otherwise it never
will be. Secondly, we see that with simple models we can obtain more profitable
solutions at very low incremental cost, because most of them can be done on a
spreadsheet. Thirdly, a student who is aware of what could be possible in terms
of optimization can interact with specialist professionals trained in O.R. be they
in-house technical people, or outside consultants.

For those who plan to major in O.R. joining a professional society as a student
member would be a good place to begin.

1.5.2 Professional Societies

The professional society for O.R. in Canada is the Canadian Operational Research
Society, or CORS for short. Information about CORS may be obtained from
http://www.cors.ca. In the United States, the Institute for Operations Research and
the Management Sciences, abbreviated as INFORMS, is the world’s largest O.R.
society. Their website is at https://www.informs.org/. Both CORS and INFORMS
are part of IFORS (http://ifors.org/), the International Federation of Operational
Research Societies.

CORS and INFORMS co-operate by holding a joint conference about once
per decade. In other years, CORS holds a conference on its own or with another
organization, at various locations across Canada.

The Administrative Sciences Association of Canada (http://www.asac.ca) is a
professional society serving all fields of business education. It organizes an annual
conference with sessions organized for all these fields, which includes Manage-
ment Science.

6See, for example, https://en.wikipedia.org/wiki/Travelling salesman problem.
7With symmetry, the number to evaluate is cut in half.

http://www.cors.ca
https://www.informs.org/
http://ifors.org/
http://www.asac.ca/
https://en.wikipedia.org/wiki/Travelling_salesman_problem
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1.5.3 OR Applications and Awards
Students often wonder where the material of this course would be used in real
life. Both the CORS and INFORMS websites give examples of such applications.
Also, the INFORMS Journal on Applied Analytics8 is a good source of applica-
tions. This journal is the most applied O.R. journal, and the easiest to read, though
in some places it uses mathematics that will be advanced for someone who is just
beginning to study decision modeling.

CORS and INFORMS offer prizes for excellence in O.R. Information about
the CORS prizes is available from http://www.cors.ca/?q=content/practice-prize-
competition. Some of the areas of research associated with the awards include:
insurance fraud; transportation; health care; scheduling of sports; designing elec-
toral districts; and production planning. Information about the INFORMS prizes
for excellence is available at https://www.informs.org/Recognizing-Excellence.

1.6 Problems for Student Completion

1.6.1 Spreadsheet Formula Exercises
For each of the following, solve in Excel, making one file, with a tab for each part.
A tab named “Sheet 1” will appear at the bottom-left. If part (a) has been solved
on this sheet, the tab can be renamed to something like “1.6.1 (a)”. By clicking
on the circled plus sign to the right, a new sheet will open, on which part (b) can
be solved.

(a) An income-tax credit for charitable donations is calculated at the lowest tax
rate on the first $200, and at the highest rate on anything exceeding that
amount. The lowest tax rate of 21.5% is in cell A2, and the highest tax rate of
48.5% is in cell A5. An individual’s total charitable donations of $3700 are
in cell C2. Cells A1, A4, and C1 are used as labels for these three things, and
the $200 is entered into cell B2. With the label “Tax Credit” in cell C4, put
the appropriate formula in cell C5 to calculate this person’s tax credit.

(b) A course has two midterm tests with the weight of 20% each being in cell
G2, and the weight of the final exam in cell G3 is =1−2*G2. However, the
professor will drop the lower test mark and add the weight to the final exam
if and only if this would help the student. The names of the students are in

8Previously named Interfaces.

http://www.cors.ca/?q=content/practice-prize-competition
http://www.cors.ca/?q=content/practice-prize-competition
https://www.informs.org/Recognizing-Excellence
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column A, starting in row 3, with the label “Student Names” in row 1 of this
column. The marks for test 1, test 2, and the final exam are in columns B, C,
and D respectively, with the corresponding labels in row 1 and the numbers
beginning in row 3. Find a formula in column E which calculates the final
mark for every student and rounds it to the nearest integer. Solve this in Excel
using the following data:

Student Names Test 1 Test 2 Final Exam
Bartlett, Joanna 37 65 73
Chan, Mia 82 86 81
Duval, Pierre 72 56 64

(c) A mining company uses a grid system in which a location at a given depth
below the surface is identified as (a,b), being a metres east of a reference
point and b metres north of it. At a depth of 500 metres below the ground,
they wish to construct a tunnel from point (103,296) to (345,237). Use Excel
to calculate the length of the tunnel.

1.6.2 Phone Plans
Consider the mobile telephone plans named Plan 1 and Plan 4, which are de-
scribed beginning on page 19.

(a) Determine analytically the values of a and b for which Plan 1 is better (i.e.
cheaper) than Plan 4.

(b) With a on the horizontal axis, and b on the vertical axis, show the region found
in part (a).

1.6.3 Cargo Plane Loading Problem
Two types of big boxes are about to be loaded onto a small cargo plane. A Type
1 box has a volume of 2.9 cubic metres (m3), and a mass of 470 kilograms (kg),
while a Type 2 box has a volume of 1.8 m3 and a mass of 530 kg. There are six
Type 1 boxes and eight Type 2 boxes waiting to be loaded. There is only one
cargo plane, and it has a volume capacity of 15 m3 and a mass capacity of 3600
kg. Obviously, not all the boxes can be put onto the plane, therefore suppose that
the objective is to maximize the value of the load. We will consider the following
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three situations: (i) both type of boxes are worth $400 each; (ii) a Type 1 box is
worth $600, and a Type 2 box is worth $250; and (iii) a Type 1 box is worth $300,
and a Type 2 box is worth $750.

Later in this course we shall see an efficient approach for solving this type of
problem, but for now we use the following simple approach:

(a) Let X and Y represent the number of Type 1 and Type 2 boxes respectively
which are put onto the plane. Where X and Y are of course positive integers
(including 0), determine all the feasible combinations (X ,Y ), using a spreadsheet
to help with the calculations. (To be feasible the total volume carried must be
≤ 15m3, and the total mass carried must be ≤ 3600 kg.)

(b) Consider a combination found in (a) which can be augmented by adding
one box (of either type) with the capacities still not being exceeded. One example
is (3,1), i.e. three Type 1 boxes, plus one Type 2 box, because (3+1,1) = (4,1),
which is feasible, would be a better solution, as would the feasible solution (3,1+
1) = (3,2). This combination (3,1) (and all others like it) is therefore trivially
sub-optimal, because we would obtain more money by adding the extra box.

Therefore, we should narrow the search by looking only at the feasible com-
binations which are so near the limit of either the mass or volume capacity that
putting one more box (of either type) onto the plane would make it unable to
fly. Mathematically, these are the combinations for which (X ,Y ) is feasible, but
neither (X +1,Y ) nor (X ,Y +1) is feasible. Find these combinations.

(c) Make a spreadsheet in which the alternatives are the combinations from
(b), and which has two cells reserved for the value of each type of box. Use
the spreadsheet to determine, for each of the three financial scenarios, how many
boxes of each type are carried, and the value of the load.

Work on this on your own and come up with your own method. If you’re stuck
after 15 minutes or so, then look at the hints which follow.

Hints

Obviously carrying no boxes is feasible, so this is a good starting point. This
solution is represented as (X ,Y ) = (0,0). We could then determine using trial-
and-error if (0,1) is feasible, and if so, then see if (0,2) is feasible, and so on. A
faster way, however, is to start by fixing X = 0, and then find the largest value
for Y . There are three restrictions: we cannot exceed the volume available; we
cannot exceed the mass available; and Y must be an integer. When X = 0 the
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volume available is of course the full 15 m3, and the mass available is 3600 kg.
Each unit of Y (each Type 2 box) takes up 1.8 m3 and 530 kg, therefore Y is the
largest integer such that both 1.8Y ≤ 15 and 530Y ≤ 3600. Hence Y ≤ 8.333...,
and Y ≤ 6.792.... Hence the most that Y can be is 6. Therefore all combinations
(X ,Y ) = (0,0), (0,1), (0,2), (0,3), (0,4), (0,5), and (0,6) are feasible.

Now suppose that X = 1. This takes up 2.9 m3 and 470 kg, therefore the type 2
boxes can use up to 15−2.9 = 12.1m3 and up to 3600−470 = 3130 kg. Based on
this, it can be seen that Y can be at most 5. Keep repeating this for higher values
of X until no more type 1 boxes can be carried, even if no type 2 boxes are carried.
You should find a total of 26 feasible combinations. Using the rules of part (b),
we see that the search can be limited to just five combinations.

A spreadsheet to do the calculations for part (a) could begin as shown on the
next page.

Find the formula for each of the cells B4, C4, D4, E4, and F4. Do not hard-
encode the data into each cell, but rather use absolute cell addresses. For F4, the
INT function is needed. The range B4:F4 is then copied to the rows below. There
will be a row in which it and all subsequent rows contain one or more negative
numbers; this means that the corresponding value of X is infeasible.
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Chapter 2

Elementary Modeling

We begin with an example involving cement production to illustrate the topic
of linear optimization in the context of the maximization of an objective. This
model is then solved graphically. We then consider variations which lead to a
more general understanding of what linear optimization is, and then consider an
extension to the cement example, and provide its graphical solution. Next, a diet
problem illustrates linear optimization when the objective is minimization. This
too is solved graphically. Finally, we show how to solve these problems using the
Solver on Excel.

2.1 Example – Cement Problem

2.1.1 Problem Description

A cement company makes two types of cement, which they market under regis-
tered tradenames, but for our purposes we will simply call them Type 1 and Type
2. Cement is sold by the Tonne (a Tonne is 1000 kilograms), and production is
measured in Tonnes per Day, abbreviated as TPD. The company has contractual
sales obligations to produce at least 40 TPD of Type 1 cement, and at least 30
TPD of Type 2 cement.

The physical capacity of the plant, which is governed by such things as con-
veyor belt speed, storage size, and so on, is limited to 200 TPD. A new labour
agreement has increased the length of breaks, and restricts and makes more costly
the use of overtime. The company therefore wishes to find its best production
plan using the new work rules with everyone working a 40 hour week. Work is

35
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measured in this company by the labour-hour, which is one person working for
one hour. Each type of cement is made in three departments, labeled A, B, and C.
To make each Tonne of Type 1 cement requires three labour-hours in Department
A, one and a half labour-hours in Department B, and four labour-hours in Depart-
ment C. The amounts of work per Tonne of Type 2 cement are two, five, and six
labour-hours in Departments A, B, and C respectively.

Based on the current authorized strength in each department, and factoring
in allowances for breaks, absenteeism, and so on, Department A has 585 labour-
hours available each day. Departments B and C are allowed to use up to 500 and
900 labour-hours per day respectively. These are the most they can use for the
making of cement. If a department has some time leftover (i.e. if the time to make
the cement is less than the number of labour-hours available), then the workers
will be idle for a few minutes at the end of the day. The three departments require
workers with very different training and skills, so the possibility of transferring
employees from one department to another is not something that is factored into
the planning process.

Taking the market price of each type of cement and from this subtracting all
the variable costs of making the cement leaves the company with a profit of $8
per Tonne of Type 1 cement, and $10 per Tonne of Type 2 cement. There are also
fixed costs (taxes, security, and so on) which total $1400 per day. The company
wants to know how much should be produced of each type of cement, so that the
profit is maximized.

2.1.2 Making a Model

Verbal, Algebraic, and Spreadsheet Models

Someone has already gone into the cement plant to obtain the relevant facts and
from this research a verbal model has been made, which appears as the “Problem
Description”. This model is complete in that the final sentence states the essence
of the problem, and gives the objective. Often, only the data is provided with a
general question of the “what should the company do?” variety.

In order to solve the problem, we need to transform the verbal model into
an algebraic model. Models with just two variables can be solved graphically,
but of course this is of limited practical use. Algebraic models can be solved
by a software package designed for this purpose, up to a size limit set by the
writers of the software. Another option is to transform the algebraic model into a
spreadsheet modelon Excel. It can then be solved by using the Solver, as we shall
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later see. Indeed, for a very simple problem like the cement problem, one can
bypass the algebraic model and go directly to the spreadsheet model. However,
this shortcut will not help us for more complex models, so we will not take this
route.

Definition of the Variables

In beginning to make an algebraic model, we wish to determine the unknowns
which will be represented using variables. The emphasis here is to focus in on the
unknowns which are at the heart of the problem, and to skip those things which can
easily be determined once the essential unknowns have been determined. In this
problem, these unknowns come from the last sentence of the problem description:
the number of TPD of Type 1 cement that should be made; and the number of
TPD of Type 2 cement that should be made. Everything else, such as the total
profit, or the idle time (if any) in one of the departments, can be determined if we
know these two essential things. With just two unknowns we could label them X
and Y , but it is more common to use subscripts, calling them X1 and X2.1 This
way of labelling the unknowns is what is required when we consider realistically
sized models, which can have thousands of variables. Hence we have:

X1 = the number of TPD of Type 1 cement made
X2 = the number of TPD of Type 2 cement made

It is very important that the definitions of the variables be made as clearly as
possible. For example, a shorthand such as “X1 = Type 1” is not acceptable.

The Objective Function

We now need to write an expression for the profit in terms of the variables. Look-
ing at the Type 1 cement alone, one Tonne gives a contribution of $8 to the profit.
Since we are producing X1 TPD, the daily profit from the production of Type 1
cement is 8X1. Similarly, the daily profit from the production of Type 2 cement is
10X2. Putting these together we have 8X1 +10X2. The $1400 in daily fixed costs
needs to be subtracted from this expression, but most traditional software (before
spreadsheets) is not set up to handle this. Therefore we omit subtracting it for
now, but we can easily subtract it at the very end when everything else has been
calculated. We write the word maximize in front of the expression, because that is

1The convention in this document is to use capital names for variables, and small letters for
parameters. Hence c1X1 refers to the product of parameter c1 and variable X1.
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the objective in this situation. The word maximize is often abbreviated to simply
max. What we call the objective function is:

maximize f (X1,X2) = 8X1 +10X2

In this document we refer to the value of the objective function as OFV (for ob-
jective function value). (A more traditional (but less intuitive) symbol is Z.) It is
conventional to omit the “ f (X1,X2) =”. Hence we simplify the objective function
to:

maximize 8X1 +10X2

The Constraints

The objective function is subject to a set of constraints which represent, in this
example, the minimum sales contract requirements, the limit on total production,
and the limit on labour availability in each of the three departments. Also present
in this and in almost every linear optimization model are non-negativity restric-
tions on the variables.

Non-Negativity Restrictions Since we cannot produce a negative quantity of
cement, we require that X1 be greater than or equal to 0, and that X2 be greater
than or equal to 0. When writing the algebraic model, we will indicate this by
writing X1 ≥ 0 and X2 ≥ 0 at the end, or in short form simply X1,X2 ≥ 0. (Most
software programs assume these restrictions and therefore they do not need to
be explicitly entered.) By convention, this short form is only used for the non-
negativity restrictions; it is not used for the other constraints.

Three Easy Constraints The first three constraints are quite easy. Their sales
contracts for 40 TPD of Type 1 cement and 30 TPD of Type 2 cement means that
we must have X1≥ 40 and X2≥ 30. Theoretically, these constraints make the non-
negativity restrictions superfluous, but we keep them anyway. This is because the
model might later change – should the sales constraints be removed, then the non-
negativity restrictions would become the new lower bounds on the variables. The
third constraint that the total production cannot exceed 200 TPD is represented by
X1 +X2 ≤ 200. So far the constraint list is:

Type 1 Sales X1 ≥ 40
Type 2 Sales X2 ≥ 30

Total Production X1 + X2 ≤ 200
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The Labour Constraints Now we determine the three labour constraints, one
for each department. The data for these constraints is written both from a prod-
uct perspective and a departmental perspective. From the product perspective we
have:

To make each Tonne of Type 1 cement requires three labour-hours
in Department A, one and a half labour-hours in Department B, and
four labour-hours in Department C. The amounts of work per Tonne
of Type 2 cement are two, five, and six labour-hours in Departments
A, B, and C respectively.

From the departmental perspective we have:

Based on the current authorized strength in each department, and
factoring in allowances for breaks, absenteeism, and so on, Depart-
ment A has 585 labour-hours available each day. Departments B and
C could use up to 500 and 900 labour-hours per day respectively.

It may be helpful to put all this data into a table with two rows, one for each type
of cement, and three columns for the labour-hours to make one Tonne of Type 1,
the labour-hours to make one Tonne of Type 2, and the number of labour-hours
available per day. Note that in this example, the data from the problem description
go into the columns. (Be careful about this, in other problems some of the data
might go into the rows).

Labour-Hours per Tonne Labour-Hours
Department of Type 1 Cement of Type 2 Cement Available each day

A 3 2 585
B 1.5 5 500
C 4 6 900

In each department, the labour-hours (LH) used cannot exceed the labour-hours
available. Let’s look at Department A in particular.

LH used ≤ LH available
LH to make Type 1+LH to make Type 2 ≤ 585

3X1 +2X2 ≤ 585

Once the pattern has been established, it becomes easy to write the labour con-
straints for Departments B and C. For Department B we must have 1.5X1+5X2 ≤
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500, and for Department C, we require that 4X1 + 6X2 ≤ 900. Once you have
become used to problems like this, you may wish to write the constraints directly
from the problem description without doing the table as an intermediate step. In
summary the labour constraints are:

Dept. A Labour 3X1 + 2X2 ≤ 585
Dept. B Labour 1.5X1 + 5X2 ≤ 500
Dept. C Labour 4X1 + 6X2 ≤ 900

Summary

The algebraic model needs to be summarized in one place. This summary consists
of: the definition of the variables; the objective function; the words subject to
followed by the constraints with their word descriptions; and the non-negativity
restrictions written in one line at the end. For questions of this type on a test or
examination in this course, just writing such a summary will suffice. Doing this
we have:

X1 = the number of TPD of Type 1 cement made
X2 = the number of TPD of Type 2 cement made

maximize 8X1 + 10X2

subject to

Type 1 Sales X1 ≥ 40
Type 2 Sales X2 ≥ 30

Total Production X1 + X2 ≤ 200
Dept. A Labour 3X1 + 2X2 ≤ 585
Dept. B Labour 1.5X1 + 5X2 ≤ 500
Dept. C Labour 4X1 + 6X2 ≤ 900

non-negativity X1 , X2 ≥ 0

After the optimal solution has been found, the fixed cost of $1400 needs to be
subtracted from the objective function value.

2.1.3 Plotting the Constraints
Introduction

From the Total Production constraint X1+X2 ≤ 200, we can see that a 200 by 200
grid is adequate for solving this problem. The convention is that the X1 variable is
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on the horizontal axis, and the X2 variable is on the vertical axis. A picture of the
grid, with word descriptions on the axes, is shown in Figure 2.1. Though you will
no doubt work with lined paper, here we suppress the printing of the grid lines to
make the plotted lines easier to see.

We now need to plot the boundaries of the six constraints, and to do this we
must find two points for each boundary line. Also, since all the constraints are
inequalities, for each we must determine the direction of the arrow which indicates
the inequality. The inequality divides the plane into two halves. On one side on
the boundary, every point satisfies the inequality; this we will call the true side.
On the other side of the inequality, no point satisfies the inequality; this we will
call the false side.

In the common situation where both of the left-hand side coefficients are pos-
itive, and where the right-hand side coefficient is strictly positive, the origin (0,0)
will be true for ≤ constraints and false for ≥ constraints. Let the top of the graph
paper be considered “north”. Therefore, for ≤ constraints the arrow which points
to the true side will point down if the boundary is horizontal, point to the left if
the boundary is vertical, and will point south-west for all other constraints. For
≥ constraints the arrow which points to the true side will point upwards if the
boundary is horizontal, will point to the right if the boundary is vertical, and will
point north-east for all other constraints. The situation where one of the left-hand
side coefficients is negative is more complicated, and will be covered later in this
chapter.

Three Easy Constraints

Three of the constraints are easy. The first one, X1 ≥ 40, is simply a vertical line
through X1 = 40, and the arrow points to the right (because the inequality makes
the origin false). The second one, X2 ≥ 30, is a horizontal line through X2 = 30,
with the arrow pointing upwards. The third constraint, which is X1 +X2 ≤ 200,
passes through 200 on both axes. Since the origin is true, the arrow points towards
the origin. The other three constraints require some calculations.

Department A Labour

The Department A Labour constraint is 3X1 + 2X2 ≤ 585. The boundary line of
this constraint is given by the equation 3X1 + 2X2 = 585. Setting X1 = 0, we
obtain X2 = 292.5, which is off the grid. When this happens we try to find an
interception point on either the right-hand side or the top boundary of the grid. In
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this situation, we find the value of X1 where the line crosses the top boundary, at
which X2 = 200. Hence we solve

3X1 +2(200) = 585
3X1 +400 = 585

3X1 = 185
X1 = 61.666...

Hence the line passes through the point (612
3 ,200). Now setting X2 = 0, we obtain

X1 = 195, which is on the grid. Therefore the boundary of the Department A
Labour constraint passes through the points (612

3 ,200) and (195,0).
The origin is true for labour constraint A, so the arrow points towards the

origin.

Departments B and C Labour

For Department B we require that 1.5X1 + 5X2 ≤ 500, whose boundary is given
by 1.5X1 +5X2 = 500. Setting X1 = 0, we obtain X2 = 100, which is fine. Setting
X2 = 0 makes X1 = 333.333..., which is off the grid. Therefore we set X1 = 200
(the right-hand side of the grid), and solve to obtain X2 = 40.

For Department C we require that 4X1 + 6X2 ≤ 900, whose boundary line is
given by 4X1 + 6X2 = 900. Setting X1 = 0, we obtain X2 = 150, which is fine.
Setting X2 = 0 makes X1 = 225, which is off the grid. Therefore we set X1 = 200
and solve to obtain X2 = 16.666....

The origin is true for labour constraints B and C, so the arrow for each one
points towards the origin.

Summary of Points for the Boundaries

In summary, the points for the boundary lines of the constraints are as follows:

Constraint First Point Second Point
Type 1 Sales (40,0) vertical
Type 2 Sales (0,30) horizontal

Total Production (0,200) (200,0)
Dept. A Labour (612

3 ,200) (195,0)
Dept. B Labour (0,100) (200,40)
Dept. C Labour (0,150) (200,162

3 )
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The points can also be displayed with the algebraic model:

X1 = the number of TPD of Type 1 cement made
X2 = the number of TPD of Type 2 cement made

maximize 8X1 + 10X2

subject to First Point Second Point

Type 1 Sales X1 ≥ 40 (40,0) vertical
Type 2 Sales X2 ≥ 30 (0,30) horizontal

Total Production X1 + X2 ≤ 200 (0,200) (200,0)
Dept. A Labour 3X1 + 2X2 ≤ 585 (612

3 ,200) (195,0)
Dept. B Labour 1.5X1 + 5X2 ≤ 500 (0,100) (200,40)
Dept. C Labour 4X1 + 6X2 ≤ 900 (0,150) (200,162

3)

non-negativity X1 , X2 ≥ 0

2.1.4 Finding the Feasible Region
All of the labour constraints have both coefficients positive on the left-hand side,
so all the corresponding arrows point south-west towards the origin. A picture of
all the constraints, showing the boundary lines and arrows which point to the true
side, is shown in Figure 2.2. We must remember not to plot the points for the
constraints backwards. For example, (0,100) lies 100 points above the origin, not
100 points to the right. The title of each constraint is written next to its boundary
line. With these titles on the constraints, and with word descriptions on the axes,
it makes the graph easy to understand.

We have not drawn arrows to explicitly indicate the two non-negativity restric-
tions, but of course these restrictions are present nevertheless. Considering all the
constraints and the non-negativity restrictions, we find the feasible region. This
region, which is labelled and highlighted, is shown in Figure 2.3.

2.1.5 Plotting a Trial Isovalue Line
At a Particular Objective Function Value

We now find a trial isovalue line, a line in which all points have the same objective
function value. This being done, we then find the optimal isovalue line, a line
parallel with the trial isovalue line which passes through the optimal solution.
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In general the objective function is of the form

max or min c1X1 + c2X2

Except when either c1 = 0 or c2 = 0 (which lead to horizontal and vertical isovalue
lines respectively), we pick any value v (except 0) and solve

c1X1 + c2X2 = v

Using this equation we set each variable equal to 0 to obtain the intercepts on the
axes. These two points define the isovalue line, which is indicated by drawing a
dashed line between them.

For example, suppose we have 8X1 +10X2 in the objective function and wish
to try v = 200, i.e. 8X1 + 10X2 = 200. If X1 = 0, then 10X2 = 200, and hence
X2 = 20. If X2 = 0, then 8X1 = 200 and hence X1 = 25. Therefore this particular
isovalue line passes through (X1,X2) = (0,20) and (25,0), and we connect these
two points with a dashed line.

An Easy Shortcut

However, while any non-zero value of v can be used, the special case where v is
the product of c1 and c2 (where c1 6= 0 and c2 6= 0) leads to an easy shortcut:

c1X1 + c2X2 = c1c2

If X1 = 0, then c2X2 = c1c2, and hence X2 = c1. Similarly, if X2 = 0, then X1 = c2.
Hence this line passes through the points (0,c1) and (c2,0), i.e. the line goes from
c1 on the vertical axis to c2 on the horizontal axis. In other words, the shortcut is
this:

1. Plot the coefficient of X1 on the vertical axis.
2. Plot the coefficient of X2 on the horizontal axis.

As the two variables could be named differently, such as X and Y , a more general
set of rules is:

1. Plot the coefficient of the horizontal variable on the
vertical axis.
2. Plot the coefficient of the vertical variable on the
horizontal axis.

These two points are then connected by a dashed line to represent a trial iso-
value line.
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Some Exceptions Of course, the shortcut may produce points that are too close
to the origin to be able to draw the connecting line, in which case we need to
multiply each intercept by a number greater than 1. At the other extreme, the
shortcut may produce intercepts which are off the page, in which case we need to
multiply each intercept by a number between 0 and 1.

The Cement Example For the example at hand, we seek to maximize 8X1 +
10X2. Using the shortcut we obtain a vertical intercept of 8 and a horizontal
intercept of 10. However, this does not help us much here, because (0,8) and
(10,0) are in the bottom left-hand corner, so it’s hard to draw the line between
them. Hence we multiply each of these intercepts by a number greater than 1. For
example, multiplying each intercept by 10 we obtain a vertical intercept of 80 and
a horizontal intercept of 100. These points (0,80) and (100,0) are what we would
have obtained if we had set 8X1+10X2 to a trial value of v = 800, and then solved
for the intercepts. Of course, there are an infinite number of trial isovalue lines,
and any one of them would suffice.

Multiple Isovalue Lines In the picture shown in Figure 2.4, a family of iso-
value lines is shown. For clarity, the constraints were removed, showing only the
feasible region and the set of isovalue lines. Any one of these could be used as a
trial isovalue line, though we will use the one for which OFV = 800. Note that
the OFV increases as we move “north-east”. We can see from this picture that
the OFV of the optimal solution must be greater than 1600, but it must also be
less than 1800, as no part of the corresponding isovalue line touches the feasible
region. This picture has been drawn only to illustrate that multiple isovalue lines
exist, and that there is an improving direction. Drawing this picture is not done as
part of the solution process, because all we need is one trial isovalue line.

2.1.6 Finding the Optimal Solution

We now find a line parallel with the trial isovalue line, which just passes through
the boundary2 of the feasible region such that the objective function value is max-
imized. A convenient means of doing this is to use a rolling ruler, but a triangle

2Usually the optimal solution occurs at a corner of the feasible region, but when there is mul-
tiple optimality an entire edge of the feasible region will be optimal. In any case, no part of the
optimal isovalue line will appear inside the feasible region.
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moved along a straightedge will work too. This optimal isovalue line is also drawn
on the graph (again, as a dashed line), and the optimal solution is identified.

A constraint is said to be binding if its boundary passes through the optimal
solution.

From the graph we can see that the binding constraints for this example are the
ones for (i) Total Production and (ii) Department C Labour, and that the optimal
solution appears to be at about X1 = 150 and X2 = 50. A picture of this is shown
in Figure 2.5.

2.1.7 Finding the Exact Solution
Using Algebra

By taking the boundaries of the two binding constraints, we can obtain the solution
exactly:

Total Production X1 + X2 = 200
Dept. C Labour 4X1 + 6X2 = 900

6X1 + 6X2 = 1200
4X1 + 6X2 = 900

2X1 + 0X2 = 300

X1 = 150

By substituting X1 = 150 into X1 +X2 = 200, we obtain X2 = 50. The optimal
mathematical solution is X∗1 = 150 and X∗2 = 50. (Asterisks are used to indicate
optimality.)

Using Matrix Operations in Excel (Optional)

Alternatively, we could solve the equations using Excel. Beginning with

Total Production X1 + X2 = 200
Dept. C Labour 4X1 + 6X2 = 900

we convert these equations to matrix form:[
1 1
4 6

][
X1
X2

]
=

[
200
900

]
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Using the Excel MINVERSE function to perform the matrix inversion we obtain:[
1 1
4 6

]−1

=

[
3 −0.5
−2 0.5

]
Using MMULT to multiply the inverse by the right-hand side values, we obtain:[

X1
X2

]
=

[
150
50

]
The unique solution is X1 = 150, and X2 = 50.

The OFV

The objective function value at the point of optimality is

OFV∗ = 8X∗1 +10X∗2
= 8(150)+10(50)
= 1200+500
= 1700

Going back to the original problem, the solution expressed in managerial terms
is:

Recommendation

The cement plant should produce 150 Tonnes per day of Type 1 cement, and 50
Tonnes per day of Type 2 cement, for a contribution to profit of $1700 per day.
After deducting the $1400 daily fixed costs, the net profit is $300 per day.

2.2 Extensions

2.2.1 General Form
To be considered a linear optimization model, we must have a linear objective
function and linear constraints. By linear we mean that in each expression:

1. A variable cannot be multiplied by another variable (for example, we cannot
have something like 7X1X2).
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2. Every variable is multiplied by a number (which can be positive, zero, or
negative) only (for example, we cannot have something like 5

√
X1).

3. No uncertainty is permitted.

4. The variables must be able to take on real (as opposed to integer) values.3

We can, however, make the model with minimization rather than maximization
as the objective, and the constraints can be equalities as well as the more usual ≤
and ≥ inequalities. The number on the right-hand side can be zero (considered
below). The non-negativity restrictions are almost always present, but these can
be removed when it is appropriate to do so. The number of variables and the num-
ber of constraints is theoretically unlimited, but the software to solve the model
will come with limitations. There is no problem in practice solving models with
thousands of variables, and indeed solving models with millions of variables is
sometimes done.

2.2.2 A Right-Hand Side Value of 0
Introduction

Here we consider the case where the number on the right-hand side of a constraint
is 0. In the next section, we will see the modeling of such a constraint. For now,
we are just interested in learning how to plot such a constraint on a graph. In a
two-variable problem, when such constraints appear one of the two variables will
have a negative coefficient. Here are some examples:

(1) 3X−8Y ≥ 0
(2) 0.6X1−0.4X2 ≤ 0
(3) −6L+3S ≥ 0
(4) −0.4X1 +0.2X2 ≤ 0

In all of the above, we begin by plotting the boundary of each constraint, which
is an equality. We will return to the inequality when determining the direction of
the arrow. The equations for the boundaries are:

(1) 3X−8Y = 0
(2) 0.6X1−0.4X2 = 0
(3) −6L+3S = 0
(4) −0.4X1 +0.2X2 = 0

3Later, when we look at Integer Models, we will relax this fourth assumption.
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In any of the above, we see that if one variable is set equal to 0, then the other
variable will also be 0. Hence anytime we have a constraint with a 0 on the right-
hand side, the constraint will pass through (0,0). We need to find another distinct
point on the boundary line.

Finding a Second Point on the Line

In constraint (1), we see that if we make X = 8, then Y will be 3, since 3(8)−
8(3) = 0. Hence, in addition to the point (0,0), this line will pass through (8,3).
If the graph paper is say 300 by 300, the point (8,3) will be so close to (0,0) that
it would be difficult to draw the line accurately. What we need to do therefore is
multiply both numbers by any positive number, as long as we do not go outside
the graph.4 For example, multiplying by 10 would give us the point (80,30). but
other possibilities would be to multiply by 20 to give (160,60), or multiply by 30
to give (240,120).

In general, we can determine the coordinates of the second point by switching
the absolute value of the two coefficients. Hence, constraint (2), whose coef-
ficients are 0.6 and −0.4, will pass through (0.4,0.6). Or, we could scale this
point up by multiplying by 100 to obtain (40,60), or multiplying by 200 to obtain
(80,120), or even multiplying by 500 to obtain (200,300).

The coefficients of (3) are −6 and 3, hence (3) passes through (3,6), or any
multiple such as (150,300). The coefficients of (4) are −0.4 and 0.2, hence (4)
passes through (0.2,0.4), or any multiple such as (100,200).

The Direction of the Arrow

When the boundary of a constraint does not pass through (0,0) (which is what
happens most of the time), we would choose (0,0) as trial point. If the constraint
is true for (0,0), the arrow points towards the origin; if false, it points away from
the origin.

The problem now is that the boundary of a constraint whose right-hand side
value is 0 does pass through the origin, so (0,0) cannot be used as a trial point.
We can pick any point which is not on the line and use it as a trial point. For
example, we could pick (100,0). We substitute this point into the left-hand side of
the constraint. If the constraint is true at this value, then the arrow points to the

4We can only do this scalar multiplication because the line goes through the origin; this does
not work in other situations.
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side of the boundary line which contains (100,0); if false, the arrow will point the
other way. Now we test each constraint using this particular trial point.

Constraint (1) We require that 3X−8Y ≥ 0. At the trial point (100,0) we obtain
3(100)−8(0) = 300≥ 0, hence (100,0) is true, and therefore all points south-east
of the boundary are true. The arrow points south-east.

Constraint (2) We require that 0.6X1− 0.4X2 ≤ 0. At the trial point (100,0)
we obtain 0.6(100)− 0.4(0) = 60 6≤ 0, hence (100,0) is false, and therefore all
points south-west of the boundary are false. The true points lie north-west of the
boundary; the arrow points north-west.

Constraint (3) We require that −6L+3S ≥ 0. At the trial point (100,0) we ob-
tain −6(100)+3(0) = −600 6≥ 0, hence (100,0) is false, and therefore all points
south-west of the boundary are false. The true points lie north-west of the bound-
ary; the arrow points north-west.

Constraint (4) We require that −0.4X1 + 0.2X2 ≤ 0. At the trial point (100,0)
we obtain −0.4(100)+0.2(0) =−40≤ 0, hence (100,0) is true, and therefore all
points south-east of the boundary are true. The arrow points south-east.

2.3 Cement Model with a Proportion Constraint

2.3.1 A Revised Model

Calling the original cement plant model (a), we now consider a modification,
which we denote as (b).

Suppose now that the cement model is as it was before, but now the amount of
Type 1 cement production cannot exceed two-thirds of the total amount produced.
This is not necessarily two-thirds of 200 TPD, because we do not know in advance
that this constraint will be binding. There are two approaches which can be used:

1. Keep the model with two variables, recognizing that the total amount pro-
duced is X1 +X2. This approach allows for the model’s solution using the
graphical method, but the two-thirds figure will no longer be transparent.
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2. Let X3 represent the total amount produced. This approach preserves the
two-thirds figure, but to find the solution we will need to use a computer.

Here we use the first approach; the second approach appears on page 80.
The amount of Type 1 cement cannot exceed 2/3 of the combined production

of Type 1 and Type 2 cement, therefore:

X1 ≤ 2
3(X1 +X2)

3X1 ≤ 2X1 +2X2

X1−2X2 ≤ 0

In the second line, we cross-multiplied by 3, to avoid the repeating decimal.5

Model (b) with this new constraint added is:

X1 = the number of TPD of Type 1 cement made
X2 = the number of TPD of Type 2 cement made

maximize 8X1 + 10X2

subject to

Type 1 Sales X1 ≥ 40
Type 2 Sales X2 ≥ 30

Total Production X1 + X2 ≤ 200
Dept. A Labour 3X1 + 2X2 ≤ 585
Dept. B Labour 1.5X1 + 5X2 ≤ 500
Dept. C Labour 4X1 + 6X2 ≤ 900

Part (b) Proportion X1 − 2X2 ≤ 0

non-negativity X1 , X2 ≥ 0

2.3.2 A Right-Hand-Side Value of 0
What’s new here is that we now must plot a constraint whose right-hand-side
(RHS) value is 0. As mentioned earlier, the boundary of any constraint with a 0
on the right-hand-side will pass through the origin. A second point is obtained
by switching the absolute value of the coefficients; the boundary passes through

5If the fraction had been something like 3
4 , we would have used the decimal equivalent 0.75;

there would be no need for cross-multiplication.
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(2,1). To obtain a better point for drawing the line, we multiply by 100 to obtain
the point (200,100). The boundary passes through (X1,X2) = (0,0) and (200,100).

On any constraint which has a negative number on the left-hand side, and
especially for one where the right-hand side value is 0, a great deal of care must
be taken to make sure that the arrow is drawn in the correct direction. We must
pick a point which is not on the line, such as (100,0). Substituting X1 = 100 and
X2 = 0 into X1−2X2 ≤ 0 gives us 100−2(0) = 100 6≤ 0, and so the point (100,0)
is false. All points on this (100,0) side of the boundary line are false. Therefore
the arrow points away from the point (100,0); i.e. the arrow points north-west.

2.3.3 The Feasible Region

Superimposing this constraint on the existing solution produces an altered feasi-
ble region; a part of the former feasible region has now become infeasible. In
Figure 2.6, the new feasible region is shown in gold, the now infeasible part of
the former feasible region is shown in light blue, and the old and new optimal
solutions are shown.

The binding constraints now are the Department B Labour constraint and the
Proportion constraint, with the optimal solution occuring at X1≈ 125 and X2≈ 60.
(The symbol ≈ means “approximately”.)

2.3.4 Finding the Exact Solution

Using Algebra At the boundaries of these constraints we obtain the exact solu-
tion:

Dept. B Labour 1.5X1 + 5X2 = 500
Proportion X1 − 2X2 = 0

3X1 + 10X2 = 1000
5X1 − 10X2 = 0

8X1 + 0X2 = 1000

X1 = 125

By substituting X1 = 125 into X1− 2X2 = 0, we obtain X2 = 62.5. The optimal
mathematical solution for the altered model is X∗1 = 125 and X∗2 = 62.5.



58 CHAPTER 2. ELEMENTARY MODELING

0 50 100 150 200
Tonnes per Day of Type 1 Cement

0

50

100

150

200

To
nn

es
pe

r
D

ay
of

Ty
pe

2
C

em
en

t

D
ept. A

Labour

Total ProductionDept. C Labour
Dept. B Labour

Type 1 Sales

Type 2
Sales

Proportio
n

Feasible Region (a)
F.R. (b)

Trial

Optimal

(b)

(a)

Optimal
Solution

Figure 2.6: Cement Problem – Altered Optimal Solution



2.3. CEMENT MODEL WITH A PROPORTION CONSTRAINT 59

Using Matrix Operations in Excel (Optional) Alternatively, we could solve
the equations using Excel. Beginning with

Dept. B Labour 1.5X1 + 5X2 = 500
Proportion X1 − 2X2 = 0

we convert these equations to matrix form:[
1.5 5

1 −2

][
X1
X2

]
=

[
500

0

]
Using the Excel MINVERSE function to perform the matrix inversion we obtain:[

1.5 5
1 −2

]−1

=

[
0.25 0.625
0.125 −0.1875

]
Using MMULT to multiply the inverse by the right-hand side values, we obtain:[

X1
X2

]
=

[
125

62.5

]
The unique solution is X1 = 125, and X2 = 62.5.

The OFV The objective function value at the point of optimality is

OFV∗ = 8X∗1 +10X∗2
= 8(125)+10(62.5)
= 1000+625
= 1625

Going back to the original problem, the solution expressed in managerial terms
is:

Recommendation

With the added requirement that the level of Type 1 production cannot exceed two-
thirds of the total production, the cement plant should produce 125 Tonnes per day
of Type 1 cement, and 62.5 Tonnes per day of Type 2 cement, for a contribution
to profit of $1625 per day. After deducting fixed costs of $1400 per day, the net
daily profit will be $225.
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Comment

The initial model with its six constraints leads to a solution which creates a (daily
contribution to) profit of $1700. Then, after adding a seventh constraint, the profit
fell to $1625. Whenever a constraint is added, the profit can at best stay the
same, and often it will fall. In general, adding another constraint (or making an
existing one more stringent) can at best keep the OFV the same, otherwise it will
be impaired. By impaired, we mean that the OFV will decrease if the objective is
maximization, and will increase if the objective is minimization. Note that while
the profit went down, only one of the variables did. The Type 1 cement production
decreased from 150 to 125 TPD, but the Type 2 cement production increased from
50 to 62.5 TPD.

2.4 Example – Diet Problem

2.4.1 Problem Description
This example is made to illustrate linear optimization. Don’t take it as nutritional
advice. A real diet shouldn’t contain only these two items.

A twenty-two year old student lives on a diet of double hamburgers and orange
juice. To make a double hamburger (bun, two patties of beef, and condiments)
costs about $1.25, and a serving (249 g) of unsweetened orange juice costs about
$0.32. She wants to minimize her daily cost of buying these things, but she has
decided to make sure that she obtains the recommended daily intake of all vita-
mins and minerals. To keep the problem simple, she wants the protein, iron, and
Vitamin C to meet or exceed the recommended amounts for a woman of her age,
and to restrict the amount of iron from hamburgers to be no more than 90% of her
total iron intake.

A search on the web 6 gives the amounts of the three nutrients per serving of
food:

Nutrient Double Hamburger Orange Juice
(per 215 g sandwich) (per 249 g serving)

Protein (g) 31.820 1.469
Iron (mg) 5.547 1.096
Vitamin C (mg) 1.075 85.656

6The website https://www.nutrition.gov/ was used to obtain this information, but the data might
now be superseded.

https://www.nutrition.gov/
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Another search 7 reveals that a woman in the age group 19-24 needs 46 g of
Protein, 15 mg of Iron, and 60 mg of Vitamin C per day.8

Her objective is to minimize the cost of her diet.

2.4.2 Formulation
Variables and the Objective Function

In order to determine how much she is spending on her daily diet, we need to
know the amounts consumed each day of hamburgers and orange juice. We must
therefore have the following two decision variables:

X1 = the number of double hamburgers eaten each day
X2 = the number of servings of orange juice drunk each day

Each double hamburger costs $1.25, and each serving of orange juice costs
$0.32, hence the objective function is:

minimize 1.25X1 +0.32X2

The Constraints

We begin with the first three constraints, one for each of three nutrients. The
purpose of these three constraints is to ensure that the recommended daily intake
(RDI) is met.

The Protein Constraint For any constraint the units must match up on the left-
hand and right-hand sides. The amount of protein consumed each day is:

total protein = protein from hamburgers + protein from orange juice
= 31.820 grams/hamburger ×X1 hamburgers +

1.469 grams/serving of orange juice ×X2 servings of orange juice
= 31.820X1 grams +1.469X2 grams

7The original source is the Food and Nutrition Board - National Academy of Sciences, 1998
(University of California, Davis).

8Nutritional advice is constantly changing, so this data is used only for the pur-
pose of illustrating the use of linear optimization in this context. See, for example,
https://www.canada.ca/en/health-canada/services/food-nutrition.html for current advice.

https://www.canada.ca/en/health-canada/services/food-nutrition.html
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Her RDI is for 46 grams of protein. To ensure that she obtains at least this amount
we use a ≥ constraint:

31.820X1 grams +1.469X2 grams ≥ 46 grams

With the sameness of the units on both sides, we can remove the word grams to
obtain:

31.820X1 +1.469X2 ≥ 46

The Iron and Vitamin C Constraints The iron and Vitamin C constraints are
in milligrams rather than grams, but the idea is the same. We obtain units of
milligrams on both sides of the inequality, and hence the word milligrams can be
dropped from both sides. The constraint for the iron requirement is:

5.547X1 +1.096X2 ≥ 15

The constraint for the Vitamin C requirement is:

1.075X1 +85.656X2 ≥ 60

The Iron Proportion Constraint Now we must restrict the iron from hamburg-
ers to be no more than 90% of the total iron consumed. Here we recognize that the
total iron consumed is 5.547X1 +1.096X2. An alternate approach which defines a
new variable appears on page 81.

We create the Iron Proportion constraint as follows:

5.547X1 ≤ 0.9(5.547X1 +1.096X2)

0.1(5.547X1)−0.9(1.096X2) ≤ 0
0.5547X1−0.9864X2 ≤ 0

The entire diet model is::

X1 = the number of double hamburgers eaten each day
X2 = the number of servings of orange juice drunk each day
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minimize 1.25X1 + 0.32X2

subject to

Protein RDI 31.820X1 + 1.469X2 ≥ 46
Iron RDI 5.547X1 + 1.096X2 ≥ 15

Vitamin C RDI 1.075X1 + 85.656X2 ≥ 60
Iron Proportion 0.5547X1 − 0.9864X2 ≤ 0

non-negativity X1 , X2 ≥ 0

2.4.3 Plotting the Constraints

A Scale for the Graph

To establish a reasonable scale for the graph, we can think of the context from
which the model came. Suppose that she eats three meals a day, each being a dou-
ble hamburger and a serving of orange juice. Mathematically, this would imply
that X1 = 3, and X2 = 3. By plugging these values into the four constraints, we
can see that this solution is feasible. Since we are trying to minimize the cost, the
solution must be less than 3 for one of the two variables, and we can hope that it
will be less than 3 for both of them. If the grid from (0,0) to (3,3) turns out to be
too small, we can always expand it later.

Boundary Points

We try to find where the boundary of every constraint intercepts the axes. When
this yields a point outside the grid, we find the intercept on the right-hand side
(X1 = 3) or top (X2 = 3) boundary instead. For example, the boundary of the
Protein RDI constraint is

31.820X1 +1.469X2 = 46

Setting X1 = 0 causes X2 to be off the 3 by 3 grid. Hence we set X2 = 3, and solve
31.820X1 +1.469(3) = 46, obtaining X1 ≈ 1.307. Setting X2 = 0 causes X1 to be
about 1.446, which is on the grid. Hence the two points for this constraint are
(1.307,3) and (1.446,0). Doing this for every constraint we obtain:
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Constraint First Point Second Point
Protein RDI (1.307,3) (1.446,0)

Iron RDI (2.111,3) (2.704,0)
Vitamin C RDI (0,0.7005) (3,0.6628)
Iron Proportion (0,0) (3,1.687)

Alternatively, this data can be written on the algebraic model:

X1 = the number of double hamburgers eaten each day
X2 = the number of servings of orange juice drunk each day

minimize 1.25X1 + 0.32X2

subject to First Point Second Point

Protein RDI 31.820X1 + 1.469X2 ≥ 46 (1.307,3) (1.446,0)
Iron RDI 5.547X1 + 1.096X2 ≥ 15 (2.111,3) (2.704,0)

Vitamin C RDI 1.075X1 + 85.656X2 ≥ 60 (0,0.7005) (3,0.6628)
Iron Proportion 0.5547X1 − 0.9864X2 ≤ 0 (0,0) (3,1.687)

non-negativity X1 , X2 ≥ 0

Direction of the Arrows

Because the origin is false for each of the first three constraints, all three arrows
point away from the origin. The fourth constraint passes through the origin, so
we test a point which is not on the constraint boundary, such as (0,2). This point
is true with respect to the inequality, so the arrow points toward this point, i.e.
upwards and to the left. These four constraints, along with their arrows and word
descriptions, are shown in Figure 2.7.

2.4.4 Feasible Region, Isovalue Lines, and the Optimal Solu-
tion

We now find and highlight the feasible region. In this example, the feasible region
is of infinite size, but it is clipped by the boundaries of the grid. Plotting the trial
isovalue line is quite easy in this situation. The objective function is to minimize
1.25X1 + 0.32X2, so we try the shortcut of plotting 1.25 on the vertical axis and
0.32 on the horizontal axis, and connect them with a dashed line. We then move
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Figure 2.7: Diet Problem – Constraints
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a rolling ruler over to the feasible region, stopping at the corner where the bound-
aries of the Iron RDI constraint and the Iron Proportion constraint intercept. This
is shown in Figure 2.8. We can see that the optimal solution lies at about 2.4
double hamburgers per day, and 1.4 servings of orange juice per day.

2.4.5 Finding the Exact Solution
Using Algebra

To find the exact solution, we find the interception point of the boundaries of the
Iron RDI and Iron Proportion constraints.

Iron RDI 5.547X1 + 1.096X2 = 15
Iron Proportion 0.5547X1 − 0.9864X2 = 0

5.547X1 + 1.096X2 = 15
5.547X1 − 9.864X2 = 0

0X1 + 10.96X2 = 15

X2 ≈ 1.3686

By substituting this value into either of the original constraints, we obtain X1 ≈
2.4337.

Using Matrix Operations in Excel (Optional)

Alternatively, we could solve the equations using Excel. Beginning with

Iron RDI 5.547X1 + 1.096X2 = 15
Iron Proportion 0.5547X1 − 0.9864X2 = 0

we convert these equations to matrix form:[
5.547 1.096

0.5547 −0.9864

][
X1
X2

]
=

[
15
0

]
Using the Excel MINVERSE function to perform the matrix inversion, and then
using MMULT to multiply the inverse by the right-hand side values, we obtain:[

X1
X2

]
=

[
2.433747972
1.368613139

]
The unique solution is X1 = 2.433747972, and X2 = 1.368613139.
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The OFV

Using the exact values from Excel, the objective function value is:

$1.25(2.433747972)+$0.32(1.368613139) = $3.48014≈ $3.48.

The question now arises as to whether we should recommend values for the vari-
ables which are not integer. To answer this question we need to consider the con-
text of the problem. The orange juice is not a problem, because if we want 1.3686
servings of 249 g each, all we have to do is make two servings of 249/1.3686
≈ 181.9 g each. The hamburgers are more of a problem, however, since it’s hard
to cook 0.4337 of a burger. However, for both the hamburgers and the orange
juice, we can interpret the DRI for each nutrient as an average to be obtained over
a period of time. For example, suppose that she eats two hamburgers and drinks
one serving of orange juice on one day, and then eats three hamburgers and drinks
two servings of orange juice on the next, and repeats this cycle. She would av-
erage 2.5 double hamburgers and 1.5 servings of orange juice over time. This
would certainly meet the requirements of the DRI constraints (2.5 > 2.4337, and
1.5 > 1.3686), and in the Iron Proportion constraint we have:

0.5547(2.5)−0.9864(1.5) =−0.09285 < 0

Hence (2.5,1.5) is a feasible solution. The average daily cost is

$1.25(2.5)+$0.32(1.5) = $3.605

which is about 12.5 cents higher than the theoretical optimal solution. We are now
ready to make a recommendation.

Recommendation

Based on a self-imposed diet of double hamburgers and orange juice, and consid-
ering only the four stated nutritional requirements, a near-optimal solution can be
implemented by eating two hamburgers and drinking one serving of orange juice
on one day, and then eating three hamburgers and drinking two servings of orange
juice on the next, and repeating this cycle. This gives an average daily cost of
$3.605.
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2.5 Solution by Using the Excel Solver

2.5.1 Introduction
The two-dimensional world given in this chapter is useful for providing an under-
standing of what linear optimization is about, but it has very limited usefulness
for practical problems. Real-world applications may involve thousands or even
millions of decision variables. We won’t be doing anything that big, but we do
want to extend what we can do beyond just two variables. To do this requires an
algorithm, which is a structured sequential approach for solving a problem. There
are several algorithms for linear optimization, but the one most commonly used is
called the simplex algorithm. At one time, learning the basics of how the simplex
algorithm works was a core topic of the compulsory introductory course. Now, if
taught at all, it would be in an elective course.

The simplex algorithm has been used in off-the-shelf software that has been
written for optimization. This document concentrates on using the Solver within
Excel for optimization. It should be noted, however, that most models of com-
mercial size are run on software which is dedicated to linear optimization; for a
discussion about such software see Appendix A which begins on page 459. One
issue is that of speed when solving large models. Another reason is that dedicated
software is generally better for data entry. However, in the educational context
where we are only trying to solve small models, spreadsheets are quite handy.
A big advantage is that if someone has already obtained an office suite for other
purposes then there is nothing new to obtain. Also, a spreadsheet is particularly
useful when the data are already in spreadsheet form.

2.5.2 Optimization using Spreadsheets
To use Excel for optimization there is an overall two-part process. At the outset,
we must build a model in Excel. Then we invoke the Solver, which needs its own
set of instructions.

Creating the Excel Model

The user begins by entering three types of information. First of all, there are
labels. Secondly, there is the given numerical information of the problem. Thirdly,
there are formulas. In what follows we enter the information in this order, but the
information can be entered in any order.
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This information is entered in a particular structure. In this book, the first
column is used for labels and the computation of the OFV. After that, there is
a column for each variable. Then comes a column for the computation of the
left-hand side of each constraint. This is followed by labels for the direction of
the inequality (or an equal sign for an equality constraint). Finally there is a
column for the right-hand side values. To illustrate this, we will use the original
formulation of the cement example:

X1 = the number of TPD of Type 1 cement made
X2 = the number of TPD of Type 2 cement made

maximize 8X1 + 10X2

subject to

Type 1 Sales X1 ≥ 40
Type 2 Sales X2 ≥ 30

Total Production X1 + X2 ≤ 200
Dept. A Labour 3X1 + 2X2 ≤ 585
Dept. B Labour 1.5X1 + 5X2 ≤ 500
Dept. C Labour 4X1 + 6X2 ≤ 900

non-negativity X1 , X2 ≥ 0

Since column A will be reserved for labels and the OFV, the two variables are
represented by columns B and C, and the right-hand side values will appear in
column F.

Labels are used to help make the model understood to the user and other per-
sons who may look at the spreadsheet. Any cell containing a label has no effect
on the calculations. Some of these labels are obvious, such as “Tonnes per Day”
and “Total Production”. However, there is also a column which gives the direction
of the inequality of the constraints, be it <= to mean ≤, or >= to mean ≥, or = for
an equality constraint.9 These may appear to be commands, but they are simply
labels. To the right of this is column F, which is headed by RHS (right-hand-side).

Entering all the labels we have:

9It is also possible to insert the special symbols ≤ and ≥. On the ribbon click on “Insert”, and
then on the extreme right click on “Symbol”, search for the symbol and click on it, and then click
on the “Insert” button.
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1
2
3
4
5
6
7
8
9
10
11
12
13

A B C D E F
Cement Model

OFV X1 X2
Type 1 Type 2

Maximize
Tonnes per Day

Constraints RHS
Type 1 Sales >=
Type 2 Sales >=
Total Production <=
Dept. A Labour <=
Dept. B Labour <=
Dept. C Labour <=

Now we enter the numerical information. The right-hand side values in col-
umn F are easy. The other numbers come from extracting the numbers from the
objective function and the constraints. The objection function is to maximize
8X1 + 10X2, hence the numbers are 8 and 10, which are placed in the columns
for the X1 and X2 variables near the top of these columns. For the constraints, we
must recognize that an X1 is a 1X1, so its coefficient is 1. If a variable is missing
from a row, then its coefficient is 0. With zeroes we have a choice: we can either
enter a 0, or leave the cell blank. For this example we input the 0’s, but for larger
models it’s simpler to leave such cells blank.

We must leave space in a row for the numerical values of the variables. Also,
one cell is reserved for the value of the OFV. These values are not entered by the
user; they will be calculated by the Solver. It is the practice in this document to
highlight the reserved space for the variables in yellow, and the space for the OFV
in green. Including the input data and the coloured cells the spreadsheet is now as
follows:
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1
2
3
4
5
6
7
8
9
10
11
12
13

A B C D E F
Cement Model

OFV X1 X2
Type 1 Type 2

Maximize 8 10
Tonnes per Day

Constraints RHS
Type 1 Sales 1 0 >= 40
Type 2 Sales 0 1 >= 30
Total Production 1 1 <= 200
Dept. A Labour 3 2 <= 585
Dept. B Labour 1.5 5 <= 500
Dept. C Labour 4 6 <= 900

On a spreadsheet, the dot product of two rows is made using the SUMPROD-
UCT function.10 The space reserved for the values of the variables is used by
the objective function and by every constraint. In each constraint row, the value
calculated by the SUMPRODUCT function goes to the right of the left-hand side
data.

We calculate the OFV by using the SUMPRODUCT function, and we also
use this function to calculate the numerical value of the left-hand side of each
constraint. These numerical values must obey the relationship of the constraint.
To save work, we can enter the SUMPRODUCT function for the OFV using
absolute labels for the range containing the variables, and then copy the formula
to where it is used by the constraints.

As the formulas are entered, we just see zeroes in those cells, because the
yellow cells on which the calculations are based are all blank, and therefore the
yellow cells are treated as zeroes. Once the Solver calculates numbers for the
yellow cells, it will put the computed numbers in the formula cells. When we see
these numbers we are in what is called normal view. However we might wish to
see the formulas instead, and so we would switch to formula view (the procedure
for switching is described on page 9).

10The syntax was seen in Chapter 1, and it can also be found using the Help menu. This function
can also handle more than just a dot product. In Excel, a comma or asterisk is used to separate one
range from another. It should also be noted that the SUM function could do this calculation, but
would have to be defined as an array.
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Here is the unsolved model, in normal view:

1
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12

13

A B C D E F

Cement Model

OFV X1 X2

0 Type 1 Type 2

Maximize 8 10

Tonnes per Day

Constraints RHS

Type 1 Sales 1 0 0 >= 40

Type 2 Sales 0 1 0 >= 30

Total Production 1 1 0 <= 200

Dept. A Labour 3 2 0 <= 585

Dept. B Labour 1.5 5 0 <= 500

Dept. C Labour 4 6 0 <= 900

The formula for cell A3 is =SUMPRODUCT(B4:C4,B5:C5). Column A in
formula view is:

1
2
3
4
5
6
7
8
9
10
11
12
13

A

OFV
=SUMPRODUCT(B4:C4,B5:C5)
Maximize
Tonnes per Day

Constraints
Type 1 Sales
Type 2 Sales
Total Production
Dept. A Labour
Dept. B Labour
Dept. C Labour
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The formula for cell D8 is =SUMPRODUCT(B$5:C$5,B8:C8); this is copied
into the cells below it in Column D. Here is column D in formula view:

1
2
3
4
5
6
7
8
9
10
11
12
13

D

=SUMPRODUCT($B$5:$C$5,B8:C8)
=SUMPRODUCT($B$5:$C$5,B9:C9)
=SUMPRODUCT($B$5:$C$5,B10:C10)
=SUMPRODUCT($B$5:$C$5,B11:C11)
=SUMPRODUCT($B$5:$C$5,B12:C12)
=SUMPRODUCT($B$5:$C$5,B13:C13)

In optimizing a model, we let Excel choose the values of the variables. To do
this, we need to use the spreadsheet Solver. The overview provided here should
be sufficient, but if needed a Solver tutorial is available from Frontline Systems,
Inc. at https://www.solver.com/.

Installing the Solver

On Windows If the Solver has not already been installed, the installation in
Windows is accessed as follows:

1. Click the “File” tab (top left of the screen).

2. A menu will appear of the left of the screen. Click on the “Options” tab
near the bottom.

3. A screen will appear called “Excel Options”. On the left, near the bottom,
click on “Add-Ins”.

https://www.solver.com/
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4. In the main body of the screen, there will be the word “Manage:”. Set the
box to its right to “Excel Add-Ins”, and then click on the “GO” button to
the right.

5. An “Add-Ins” screen will appear. Click on the box to the left of the words
“Solver Add-In”, and then click on “OK”.

On Apple Mac For the Apple Mac the procedure is:

1. Choose “Tool” on the TOP menu.

2. Select “Excel Add-ins..” from the menu.

3. Select “Solver Add-In” on the panel.

4. Solver is accessed from the “Data” MAIN menu.

Using the Solver

After entering the model, the Solver is invoked by clicking on Data, and then on
the far right, clicking on Solver. The user specifies the following:

1. the cell which is to be optimized, called the objective cell, which is the cell
which will contain the OFV)

2. the objective (e.g. maximization)

3. a range of cells which the Solver may vary, i.e. the range of cells reserved
for the values of the variables, called the variable cells, and

4. the constraints.

For every constraint we will compare the cell which contains the value of the
left hand side with the cell which contains the right hand side value, specifying
the relationship (≤, =, or ≥) between these two cells. Constraints which are con-
tiguous to one another of the same type (≤, =, or ≥) can be entered as a range
rather than specifying each one separately.

In the Solver window, the user needs to click on the box next to the words
“Make Unconstrained Variables Non-Negative”. Also, after the words “Select
a Solving Method”, the user should choose “Simplex LP”. In the Options box,
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the default numerical values should be fine, and the three boxes should be blank,
except that the first one “Use Automatic Scaling” may be desired.11

For this example, the objective cell is A3, the objective is maximization, and
the variable cells are in the range B5:C5. We click on the “Add” button to add a
set of constraints. Since the first two constraints are both ≥, we add both at the
same time, clicking and then dragging the mouse over the two cells on both the
left-hand and right-hand sides. We require that the number in cell D8, which is
the numerical value of the left-hand side of the first constraint, be ≥ the number
in cell F8, and also that the number in cell D9 be ≥ the number in cell F9. In the
middle, we need to set the direction to be “>=” (the default is “<=”).

The last four constraints are all ≤, so they are entered as:

Filling in the Solver we have:

11A model is said to be poorly scaled when the coefficients of one row are very much greater
than those of another, for example if one constraint is 2X1+5X2≤ 41 while another is 450,000X1+
195,000X2 ≤ 2,715,000. When the Solver tries to solve a poorly scaled model, it may experience
numerical problems in finding the optimal solution. Automatic rescaling helps eliminate such
problems. See D. Flystra, A. Lasdon, J. Watson, and A. Waren, “Design and Use of the Microsoft
Excel Solver”, Interfaces, 28:5 September-October 1998, pp. 29-55.
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Optimizing the model we obtain (the optimal values of the variables are high-
lighted):
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1

2

3

4

5
6

7

8

9

10

11

12

13

A B C D E F

Cement Model

OFV X1 X2

1700 Type 1 Type 2

Maximize 8 10

Tonnes per Day 150 50

Constraints RHS

Type 1 Sales 1 0 150 >= 40

Type 2 Sales 0 1 50 >= 30

Total Production 1 1 200 <= 200

Dept. A Labour 3 2 550 <= 585

Dept. B Labour 1.5 5 475 <= 500

Dept. C Labour 4 6 900 <= 900

As one would expect, cell A3 contains the optimal OFV of 1700, and cells B5
and C5 contain 150 and 50 respectively, which are the optimal Tonnes per Day of
type 1 and type 2 cement respectively.

The user can request an “Answer Report” which will give the value of the
target cell (the OFV), the values of all the variables, and the slack, if any, on each
constraint. Note that in the Answer Report, the order of the constraints is not the
same as the order in the algebraic model.

Omitting what appears at the top of the Answer Report we have:
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Microsoft Excel 14.0 Answer Report

Worksheet: [cement.xlsx]Sheet1

Report Created: 19/07/2013 12:23:08 PM

Result: Solver found a solution.  All Constraints and optimality conditions are satisfied.

Solver Engine

Engine: Simplex LP

Solution Time: 0.031 Seconds.

Iterations: 5 Subproblems: 0

Solver Options

Max Time Unlimited,  Iterations Unlimited, Precision 0.000001

Max Subproblems Unlimited, Max Integer Sols Unlimited, Integer Tolerance 1%, Assume NonNegative

Objective Cell (Max)

Cell Name Original Value Final Value

$A$3 OFV 0 1700

Variable Cells

Cell Name Original Value Final Value Integer

$B$5 Tonnes per Day Type 1 0 150 Contin

$C$5 Tonnes per Day Type 2 0 50 Contin

Constraints

Cell Name Cell Value Formula Status Slack

$D$10 Total Production 200 $D$10<=$F$10 Binding 0

$D$11 Dept. A Labour 550 $D$11<=$F$11 Not Binding 35

$D$12 Dept. B Labour 475 $D$12<=$F$12 Not Binding 25

$D$13 Dept. C Labour 900 $D$13<=$F$13 Binding 0

$D$8 Type 1 Sales 150 $D$8>=$F$8 Not Binding 110

$D$9 Type 2 Sales 50 $D$9>=$F$9 Not Binding 20

2.5.3 Slack and Surplus

The Excel output contains a column labelled “Slack”, which needs some explana-
tion.

We begin by defining two concepts, that of slack and surplus, as they appear
in most books and in most software for optimization (but not on the Excel Solver).
For a≤ constraint, the slack is defined as the right-hand side value minus the value
of the left-hand side at the point of optimality. For a ≥ constraint, the surplus is
defined as the value of the left-hand side at the point of optimality minus the
right-hand side value. By contrast, the Excel Solver only uses the term slack; for
either a ≤ or a ≥ constraint, the Solver computes the slack for each constraint
as the absolute value of the difference between the right-hand side value and the
numerical value of the left-hand-side computed at the optimal solution.

On page 50, we saw that a binding constraint is one that passes through the
optimal solution. An equivalent definition is that if the slack or surplus is 0, then
the constraint is said to be binding; if the slack or surplus is greater than 0, then
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the constraint is non-binding. Said another way, a constraint is binding if and only
if the value of the left-hand side at the point of optimality equals the right-hand
side value.

For a model for which the optimal solution has been computed, the slack or
surplus can easily be found by hand. For the cement example we know that the
optimal solution is X1 = 150 and X2 = 50. Let’s calculate the surplus on the Type
1 Sales constraint, and the slack on the Department A Labour constraint. The
Type 1 Sales constraint is X1 ≥ 40 (or 1X1 +0X2 ≥ 40). The optimal values of X1
and X2 are 150 and 50 respectively, hence the value of the left-hand side of the
constraint is 1(150) + 0(50) = 150. Since the number on the right-hand side is only
40, the left-hand side value is 150−40 = 110 more than it needs to be; the surplus
on the Type 1 Sales Constraint is 110. The Department A Labour constraint is
3X1 +2X2 ≤ 585. At the optimal solution of (150,50) the left-hand side value is:

3(150)+2(50) = 550

By subtracting 550 from 585, we obtain a slack of 35.

2.6 Model Variations with Three Variables (Optional)

2.6.1 Cement Problem
Here we consider the cement model with the proportion constraint, using three
variables. Two of them were defined earlier; the third one is:

X3 = the total production of cement in TPD

The variable X1 cannot exceed two-thirds of X3, which we write as

X1 ≤ 2
3X3

or equivalently
X1− 2

3X3 ≤ 0

We need to add this proportion constraint to the existing model. Also, we need to
write the relationship between X3 and the other variables, which is:

X3 = X1 +X2

As a constraint with all variables on the left, this is:

X3−X1−X2 = 0
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which can be re-arranged to:

X1 +X2−X3 = 0

With this third variable present the total production constraint can be written in
terms of it. Doing this and then adding the new third variable and the two new
constraints we obtain:

X1 = the number of TPD of Type 1 cement made
X2 = the number of TPD of Type 2 cement made
X3 = the total production of cement in TPD

maximize 8X1 + 10X2

subject to

Type 1 Sales X1 ≥ 40
Type 2 Sales X2 ≥ 30

Total Production X3 ≤ 200
Dept. A Labour 3X1 + 2X2 ≤ 585
Dept. B Labour 1.5X1 + 5X2 ≤ 500
Dept. C Labour 4X1 + 6X2 ≤ 900

Proportion X1 − 2
3X3 ≤ 0

Balance X1 + X2 − X3 = 0

non-negativity X1 , X2 , X3 ≥ 0

Modeling in this manner is the best form in that no calculations are required
for any of the parameters. The advantages of doing no calculations are twofold:
the original data are preserved; and there’s less likely to be a mistake. To solve this
model using the Excel Solver, we do not even need to make the minor calculation
of converting the minus two-thirds to decimal form, i.e.− 0.66667; all we need to
do is enter =-2/3 into the appropriate cell.

2.6.2 Diet Model
An alternate way of handling the iron proportion constraint is to define a third
variable, used to represent the total amount of iron consumed:

X3 = the amount of iron consumed each day (in mg)
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The daily intake of iron from hamburgers (in mg) is 5.547X1. Hence we must
have:

5.547X1 ≤ 0.9X3

5.547X1−0.9X3 ≤ 0

The total iron intake X3 is the amount from hamburgers, which is 5.547X1, plus
the amount from orange juice, which is 1.096X2. Therefore, we must have:

X3 = 5.547X1 +1.096X2

which we can re-arrange as

5.547X1 +1.096X2−X3 = 0

Finally, we have the non-negativity restrictions.

Summary

The completed model is:

X1 = the number of double hamburgers eaten each day
X2 = the number of servings of orange juice drunk each day
X3 = the amount of iron consumed each day (in mg)

minimize 1.25X1 + 0.32X2

subject to

Protein RDI 31.820X1 + 1.469X2 ≥ 46
Iron RDI 5.547X1 + 1.096X2 ≥ 15

Vitamin C RDI 1.075X1 + 85.656X2 ≥ 60
Iron Proportion 5.547X1 − 0.9X3 ≤ 0

Iron Balance 5.547X1 + 1.096X2 − X3 = 0

non-negativity X1 , X2 , X3 ≥ 0

Because of the third variable, we would need to solve this model using the
Solver on Excel.12

12Normally, a model with three variables cannot be converted to a model with just two variables.
However, when there is an equality constraint, one variable can be written in terms of the other
two variables, and then this one variable can be eliminated. To do so would produce the models
which we solved by graphing earlier in this chapter.
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2.7 Problems for Student Completion

Using just two variables, formulate a linear optimization model for each of the
following problems. Solve each model graphically, clearly indicating the feasible
region, and both the trial and optimal isovalue lines. For each model, use alge-
bra to determine the exact solution for the variables and the objective function
value. You may find it useful to also solve one or more of these problems on a
spreadsheet.

2.7.1 Garment Problem

When solving the following model, use a piece of graph paper with each axis
labelled from 0 to 300, and draw all lines within the 300 by 300 grid.

A garment factory makes blouses and dresses. Each blouse gives a profit of
$2, while each dress gives a profit of $3. They can sell at most 190 dresses. Each
garment spends time on three machines as follows:

Minutes per Garment Minutes
Machine Blouse Dress Available
Cutting 3 6 1413
Sewing 6 2 1218
Assembly 5 4 1317

The number of dresses must be at least 30% of the total number of garments made.

2.7.2 Baseball Bat Problem

A baseball bat company makes two models, the “slugger” and the “whacker”.
Each slugger requires four minutes of lathework, and one minute of varnishing.
Each whacker requires five minutes of lathework and 45 seconds of varnishing.
Each day, the combined production cannot exceed 980 bats. The woodworking
shop operates 16 hours/day, with one room containing five lathes, and one var-
nishing room. Each of the five lathes is available for 55 minutes each hour, and the
varnishing room is available for 50 minutes each hour. Each slugger contributes
$5 to profit, and each whacker contributes $6.

The company wishes to determine how many sluggers and whackers should
be made each day.
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2.7.3 Car-Assembly

A car-assembly plant makes sedans and SUVs. Each sedan gives a profit of $500,
while each SUV gives a profit of $800. They can sell at most 550 sedans. Each
vehicle spends time on three operations as follows:

Hours per Vehicle Hours
Operation Sedan SUV Available
Assembly 12 24 16,956
Welding 6 2 3,654
Painting 5 4 3,951

SUVs must comprise at least 40% of the total number of vehicles made.

(a) Using just two variables, formulate a linear optimization model for this prob-
lem.

(b) Without drawing any lines outside a 1000 by 1000 grid, solve the model from
part (a) graphically, clearly indicating the feasible region, and both the trial
and optimal isovalue lines. Use algebra to determine the exact solution, and
state the recommendation.

2.7.4 Quarry Problem

Background Note: The density of an object is its mass divided by its volume.
Hence mass is density times volume, and volume is mass divided by density.

Two types of rock are mined in a quarry. “Softrock” has an density of 5 Tonnes
per cubic metre, and “hardrock” has a density of 8 Tonnes per cubic metre. Up
to 600 Tonnes of softrock can be mined each hour, and independent of this, up to
300 Tonnes of hardrock can be mined each hour. The mined rock is crushed and
then travels on a conveyor belt. (To avoid mixing the two types of rock they will
crush one type of rock, then switch over to the other type, and then keep switching
back and forth).

The conveyor belt can handle up to 110 cubic metres of rock per hour. The
crusher can handle up to 1000 Tonnes per hour when crushing softrock, or up to
400 Tonnes per hour when crushing hardrock. The company makes $10/Tonne for
softrock and $14/Tonne for hardrock. The quarry operator wishes to know how
many Tonnes of each type of rock they should produce each hour.
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2.7.5 Office Rental
A company needs to rent space for its office employees both in the suburbs and
downtown. Space is available in suburbia at a rate of $100 per square metre (per
annum), while downtown space rents for $210 per square metre (per annum). In
suburbia, only 30% of the space is “executive” quality, while the rest is ordinary
quality. At the downtown location, 60% of the space is executive quality, while the
rest is ordinary quality. The company needs a total of at least 900 square metres
of space, of which at least 420 square metres must be executive quality. No more
than three quarters of the entire space is to be at either location.

They wish to know how much space they should rent in each place so as to
minimize the total expenditure on rent. Formulate and solve by the graphical
method.

2.7.6 Diet Problem
Suppose that a kilogram of beef contains 600 grams of protein, and 80 grams of
fat, but no Vitamin C. A litre of orange juice contains 6 grams of protein, no fat,
and four times the required daily intake of Vitamin C. A person needs 54 grams
of protein per day, and the fat should be between 10 and 60 grams per day. No
more than 95% of the protein consumed should come from beef. A kilogram of
beef costs $6, while a litre of orange juice costs $2.

Based on these two foods alone, and only the stated requirements, we seek the
minimum cost daily diet. Formulate and solve by the graphical method.
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Chapter 3

Applications of Linear Models

The formulation examples of the previous chapter were relatively easy, mostly be-
cause the decision variables were obvious. There are many applications of linear
optimization where this is not the case. In this chapter we shall examine several
applications where we must give a fair deal of thought as to what the decision
variables should be.

An algebraic model is created for each problem. For some of these problems,
we also provide the corresponding spreadsheet models.

3.1 Blending
Here we give an example of a common use of linear optimization from the oil and
gas industry – that of blending several inputs to produce several outputs. First of
all, we will discuss a bit of chemistry.

3.1.1 Background Information
There are many characteristics of gasoline which one could measure. For our
purposes, we will just use two, octane rating and vapour pressure.

The higher the octane rating of a gasoline, the greater the anti-knock proper-
ties. The rating is expressed without units, with most gasolines sold commercially
having an octane rating between 80 and 110. Higher octane gasoline is required
for high performance engines found in some cars and in the aviation industry.

The vapour pressure is the pressure exerted by the gasoline’s vapour on the liq-
uid gasoline. Higher performance engines usually require a lower vapour pressure

87



88 CHAPTER 3. APPLICATIONS OF LINEAR MODELS

than ordinary engines. It is usually measured in kilopascals (kPa). 1

When two gasolines are blended, the octane rating of the blend is a function
of the octane ratings of each gasoline. As an approximation, 2 it can be taken
as the weighted average, where the weights are the volumes of the inputs. For
example, if 7 litres of an 83 octane gasoline are mixed with 13 litres of a 101
octane gasoline, then the octane rating of the 20 litres of mixed gasoline is about

7×83+13×101
7+13

= 94.7

The vapour pressure of the blend can be found in a similar manner.

3.1.2 Problem Description

Returning to linear optimization, we now consider a situation where two gasolines
are blended into two commercial products. We will refer to these as input gaso-
lines 1 and 2 and output gasolines 1 and 2 respectively. For the inputs, the octane
ratings, the vapour pressures in kilopascals, and the amounts available in cubic
metres and their prices are known. These are:

Input Octane Vapour Amount Price
Gasoline # Rating Pressure (kPa) Available (m3) ($ per m3)

1 110 35 25,000 265
2 80 65 60,000 188

For the output gasolines, the company has made a set of specifications. There
is of course no need to produce products at the limit of the specifications. If,
for example, a minimum octane rating of 95 is promised, there is nothing wrong
with delivering it to the customer with a rating of 96.3. We further suppose that
the company must make a minimum amount of each type of output to serve its
customer base. These data, and the wholesale (before tax) prices are:

1A kilopascal is the pressure exerted by a force of one thousand newtons over an area of one
square metre.

2Chemistry is an empirical science – sometimes our intuition does not help us. For example,
the freezing point of a equal-part mixture of water and ethylene glycol is lower than the freezing
point of either water or ethylene glycol.
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Output Minimum Maximum Minimum Wholesale
Gasoline Octane Vapour Amount Price

# Rating Pressure (kPa) Required (m3) ($ per m3)
1 95 40 15,000 310
2 85 55 30,000 230

3.1.3 Formulation

With Subscripted Variables

We begin by creating a model using subscripted variables, For large problems
this is the only practical way to make the algebraic model. That being said, an
example as small as this one can be formulated with unsubscripted variables, and
this variant is presented in the next section.

As always, we begin by trying to define the decision variables. We say “try”
because unless one has seen a problem like this before, or unless one is particularly
clever, it is difficult to define all the variables at the outset. What we will do is
define the ones which are obvious, then attempt to write the constraints, and by
doing this seeing what other variables we need.

The place to start is the objective. We are trying to maximize the contribution
to profit from the blending of the gasolines. This contribution is the revenue from
the sales of the two output gasolines, minus the cost of the purchases of the two
input gasolines. Therefore, we wish to know the volume produced and sold of
each output gasoline, and we wish to know the volume purchased of each input
gasoline. At a minimum, we need the following four decision variables:

X1 = amount (in m3) of output gasoline #1 sold,
X2 = amount (in m3) of output gasoline #2 sold,
I1 = amount (in m3) of input gasoline #1 purchased,
I2 = amount (in m3) of input gasoline #2 purchased.

We can now write the objective function. To determine the profit, the cost of
the input gasolines must be subtracted from the revenue of the output gasolines.
Hence, the coefficients of the two input gasolines will be negative.

maximize 310X1 +230X2−265I1−188I2

Some of the constraints can now be written. These are the constraints on the
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availability of the inputs, and the minimum production constraints on the outputs.

I1 ≤ 25,000
I2 ≤ 60,000

X1 ≥ 15,000
X2 ≥ 30,000

Unfortunately, this is as far as we can go with these four variables. In order
to write the constraints on the octane rating and the vapour pressure of the two
output gasolines, we will have to define some more variables. In order to compute
the octane rating of one of the outputs, we need to know the amount which comes
from each input. The same applies for the octane rating of the other output, and
the vapour pressure of each of the two outputs. We therefore need to know how
much of input 1 is used to make output 1, how much of input 1 is used to make
output 2, how much of input 2 is used to make output 1, and how much of input
2 is used to make output 2. Hence, we need another four variables. Rather than
define these variables as U1 to U4, we will use double subscription. The first index
refers to the input, and the second index refers to the output. Hence:

U1,1 = amount (in m3) of input 1 used to make output 1,

U1,2 = amount (in m3) of input 1 used to make output 2,

U2,1 = amount (in m3) of input 2 used to make output 1,

U2,2 = amount (in m3) of input 2 used to make output 2.

A compact way of writing these four definitions is to define

Ui j = amount (in m3) of input i used to make output j, where i = 1,2 and
j = 1,2.3

The following picture illustrates how the Ui j’s are transferred from the inputs
to the outputs.

3With double subscription, we need to use a comma separator when use numbers. However,
when using i and j, we do not need a comma separator. Hence, we write Ui j rather than Ui, j.
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The Ui j’s are related to the Ii’s and the X j’s by what are known as volume
balance constraints. For example, we must have that

U1,1 +U1,2 = I1.

Keeping with the convention that all variables must appear on the left we will
re-write this as

−I1 +U1,1 +U1,2 = 0.

Addition is commutative, so we could have written U1,1 +U1,2− I1 = 0. Either
way is acceptable as far as the formulation of the algebraic model is concerned.
However, the order does matter when the model is converted into spreadsheet
form. The order is established first by the objective function, which contains the
variables X1,X2, I1 and I2. For the variables which do not appear in the objective
function, the order is that of first appearance in the constraints.

The other balance constraints are:

−I2 +U2,1 +U2,2 = 0
−X1 +U1,1 +U2,1 = 0
−X2 +U1,2 +U2,2 = 0



92 CHAPTER 3. APPLICATIONS OF LINEAR MODELS

The octane rating of output 1 is expressed4 as:

110U1,1 +80U2,1

U1,1 +U2,1

Since the octane rating of output gasoline 1 must be at least 95, we write:

110U1,1 +80U2,1

U1,1 +U2,1
≥ 95

We could simplify this non-linear expression by multiplying both sides of the
inequality by U1,1 +U2,1, and then subtracting 95(U1,1 +U2,1) from both sides to
obtain:

15U1,1−15U2.1 ≥ 0

However, doing things this way hides the original data of the problem. Instead,
we make the substitution of X1 for U1,1 +U2,1:

110U1,1 +80U2,1

X1
≥ 95

Now we multiply both sides by X1 to obtain:

110U1,1 +80U2,1 ≥ 95X1.

Not only is this now in a linear form, this expression also permits the possibility
of X1 being 0. Putting all variables on the left we obtain:

−95X1 +110U1,1 +80U2,1 ≥ 0.

We could have written 110U1,1+80U2,1−95X1 ≥ 0, but as we did for the equality
constraints, we use the variable order which will be required when the model is
converted into spreadsheet form.

Similarly, the octane rating constraint for output 2 gasoline is:

110U1,2 +80U2,2

U1,2 +U2,2
≥ 85

Substituting X2 for U1,2+U2,2, cross-multiplying, and then subtracting, we obtain:

−85X2 +110U1,2 +80U2,2 ≥ 0.

4Assuming that the denominator is greater than 0.
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The vapour pressure of output 1 gasoline must be no more than 40 kPa:

35U1,1 +65U2,1

U1,1 +U2,1
≤ 40

Substituting X1 and then cross-multiplying gives:

35U1,1 +65U2,1 ≤ 40X1

Subtracting the 40X1 from both sides gives:

−40X1 +35U1,1 +65U2,1 ≤ 0

The vapour pressure for output 2 gasoline can be no more than 55 kPa:

35U1,2 +65U2,2

U1,2 +U2,2
≤ 55

After substituting X2 and re-arranging the vapour pressure constraint for output 2
gasoline is:

−55X2 +35U1,2 +65U2,2 ≤ 0

Finally, we require that all variables be non-negative.5

Putting all the above together we obtain:

X1 = amount (in m3) of output gasoline #1 sold,
X2 = amount (in m3) of output gasoline #2 sold,
I1 = amount (in m3) of input gasoline #1 purchased,
I2 = amount (in m3) of input gasoline #2 purchased,
U1,1 = amount (in m3) of input 1 used to make output 1,
U1,2 = amount (in m3) of input 1 used to make output 2,
U2,1 = amount (in m3) of input 2 used to make output 1,

5The non-negativity restrictions for X1 and X2 are technically redundant, but we include them
anyway. If, for example, the minimum sales constraints were removed, the non-negativity restric-
tions would have to be there.
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U2,2 = amount (in m3) of input 2 used to make output 2.

maximize 310X1 +230X2−265I1−188I2
subject to

Available, Input 1 I1 ≤ 25000
Available, Input 2 I2 ≤ 60000

Minimum production, Output 1 X1 ≥ 15000
Minimum production, Output 2 X2 ≥ 30000

Balance, Input 1 −I1 +U1,1 +U1,2 = 0
Balance, Input 2 −I2 +U2,1 +U2,2 = 0

Balance, Output 1 −X1 +U1,1 +U2,1 = 0
Balance, Output 2 −X2 +U1,2 +U2,2 = 0

Octane Rating, Output 1 −95X1 +110U1,1 +80U2,1 ≥ 0
Octane Rating, Output 2 −85X2 +110U1,2 +80U2,2 ≥ 0

Vapour Pressure, Output 1 −40X1 +35U1,1 +65U2,1 ≤ 0
Vapour Pressure, Output 2 −55X2 +35U1,2 +65U2,2 ≤ 0

all variables must be ≥ 0

Finally, we note that it is possible, but not recommended, to formulate this
problem in a more compact fashion, by using the equality constraints to replace
the X and I variables with the U variables. This would save us four constraints
and four variables, but it makes the formulation more difficult and less intuitive.
Therefore, we strongly prefer the form given here.

Alternate Notation

As mentioned earlier, an example as small as this one can be made with unsub-
scripted variables. Here follows an alternate way to name the variables:

X = amount (in m3) of output gasoline #1 sold,
Y = amount (in m3) of output gasoline #2 sold,
A = amount (in m3) of input gasoline #1 purchased,
B = amount (in m3) of input gasoline #2 purchased,
AX = amount (in m3) of input A used to make output X,
AY = amount (in m3) of input A used to make output Y,
BX = amount (in m3) of input B used to make output X,
BY = amount (in m3) of input B used to make output Y.

Do not confuse AX with A times X ; AX is a single entity.
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Using this notation the model is:

maximize 310X +230Y −265A−188B
subject to

Available, Input A A ≤ 25000
Available, Input B B ≤ 60000

Minimum production, Output X X ≥ 15000
Minimum production, Output Y Y ≥ 30000

Balance, Input A −A+AX +AY = 0
Balance, Input B −B+BX +BY = 0

Balance, Output X −X +AX +BX = 0
Balance, Output Y −Y +AY +BY = 0

Octane Rating, Output X −95X +110AX +80BX ≥ 0
Octane Rating, Output Y −85Y +110AY +80BY ≥ 0

Vapour Pressure, Output X −40X +35AX +65BX ≤ 0
Vapour Pressure, Output Y −55Y +35AY +65BY ≤ 0

all variables must be ≥ 0

3.1.4 Solution Using the Excel Solver

We put this formulation onto a spreadsheet. Here are a few points relevant to this
example:

1. The variable names in the spreadsheet model use the original subscripted
ones. However, these are just labels which mean nothing to Excel. We
could easily use the alternate notation if we wish.

2. Since the SUMPRODUCT function works on a sum of products, we handle
subtraction rather than addition by treating the coefficient as being negative.
For example, we treat −265 as if it were +(−265). The + sign is assumed
in the SUMPRODUCT function, and the negative simply appears in the cell
which contains the 265 (which is D3). The formula placed in cell A3 is
=SUMPRODUCT(B3:I3,B4:I4).

3. In Column J, we enter =SUMPRODUCT($B$4:$I$4,B6:I6) into cell
J6, and then copy this into the range J6:J17.
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4. Excel assumes that an “=” sign begins an equation; when it doesn’t (as used
in K10:K13), we need to enter an apostrophe before the equal sign (i.e. ’=
creates a visual = sign in Excel).

We enter the data to obtain:

1

2

3

4
5

6

7

8

9

10

11

12

13

14

15

16

17

A B C D E

Blending Model X1 X2 I1 I2

Profit Output 1 Output 2 Input 1 Input 2

$0 310 230 ‐265 ‐188

Available, Input 1 1

Available, Input 2 1

Minimum Prod., Output 1 1

Minimum Prod., Output 2 1

Balance, Input 1 ‐1

Balance, Input 2 ‐1

Balance, Output 1 ‐1

Balance, Output 2 ‐1

Octane Rating, Output 1 ‐95

Octane Rating, Output 2 ‐85

Vapour Pressure, Output 1 ‐40

Vapour Pressure, Output 2 ‐55
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1

2

3

4
5

6

7

8

9

10

11

12

13

14

15

16

17

F G H I J K L

U11 U12 U21 U22

1 into 1 1 into 2 2 into 1 2 into 2

0 0 0 0

RHS

0 <= 25000

0 <= 60000

0 >= 15000

0 >= 30000

1 1 0 = 0

1 1 0 = 0

1 1 0 = 0

1 1 0 = 0

110 80 0 >= 0

110 80 0 >= 0

35 65 0 <= 0

35 65 0 <= 0

Entering consecutive constraints of the same type (≤, =, or ≥) together, we
obtain the following Solver Parameters box:
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Using the Solver we obtain:
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1

2

3

4
5

6

7

8

9

10

11

12

13

14

15

16

17

A B C D E

Blending Model X1 X2 I1 I2

Profit Output 1 Output 2 Input 1 Input 2

$1,531,000 310 230 ‐265 ‐188

18000 30000 25000 23000

Available, Input 1 1

Available, Input 2 1

Minimum Prod., Output 1 1

Minimum Prod., Output 2 1

Balance, Input 1 ‐1

Balance, Input 2 ‐1

Balance, Output 1 ‐1

Balance, Output 2 ‐1

Octane Rating, Output 1 ‐95

Octane Rating, Output 2 ‐85

Vapour Pressure, Output 1 ‐40

Vapour Pressure, Output 2 ‐55

1

2

3

4
5

6

7

8

9

10

11

12

13

14

15

16

17

F G H I J K L

U11 U12 U21 U22

1 into 1 1 into 2 2 into 1 2 into 2

0 0 0 0

15000 10000 3000 20000 RHS

25000 <= 25000

23000 <= 60000

18000 >= 15000

30000 >= 30000

1 1 0 = 0

1 1 0 = 0

1 1 0 = 0

1 1 0 = 0

110 80 180000 >= 0

110 80 150000 >= 0

35 65 0 <= 0

35 65 0 <= 0
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We can simply read the solution from the output, or we can ask for the Answer
Report, which is:

Objective Cell (Max)

Cell Name Original Value Final Value

$A$3 Profit $0 $1,531,000

Variable Cells

Cell Name Original Value Final Value Integer

$B$4 Output 1 0 18000 Contin

$C$4 Output 2 0 30000 Contin

$D$4 Input 1 0 25000 Contin

$E$4 Input 2 0 23000 Contin

$F$4 1 into 1 0 15000 Contin

$G$4 1 into 2 0 10000 Contin

$H$4 2 into 1 0 3000 Contin

$I$4 2 into 2 0 20000 Contin

Constraints

Cell Name Cell Value Formula Status Slack

$J$10 Balance, Input 1 0 $J$10=$L$10 Binding 0

$J$11 Balance, Input 2 0 $J$11=$L$11 Binding 0

$J$12 Balance, Output 1 0 $J$12=$L$12 Binding 0

$J$13 Balance, Output 2 0 $J$13=$L$13 Binding 0

$J$14 Octane Rating, Output 1 180000 $J$14>=$L$14 Not Binding 180000

$J$15 Octane Rating, Output 2 150000 $J$15>=$L$15 Not Binding 150000

$J$16 Vapour Pressure, Output 1 0 $J$16<=$L$16 Binding 0

$J$17 Vapour Pressure, Output 2 0 $J$17<=$L$17 Binding 0

$J$6 Available, Input 1 25000 $J$6<=$L$6 Binding 0

$J$7 Available, Input 2 23000 $J$7<=$L$7 Not Binding 37000

$J$8 Minimum Prod., Output 1 18000 $J$8>=$L$8 Not Binding 3000

$J$9 Minimum Prod., Output 2 30000 $J$9>=$L$9 Binding 0

In summary the solution is:

I∗1 = 25,000
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I∗2 = 23,000
X∗1 = 18,000
X∗2 = 30,000

U∗1,1 = 15,000
U∗1,2 = 10,000
U∗2,1 = 3,000
U∗2,2 = 20,000

The optimal solution uses all the input 1 available, and produces the minimum
requirement for output 2. The objective function value is $1,531,000.

The recommendation is to purchase 25,000 cubic metres (or 25,000,000 litres)
of input 1, of which 15,000 cubic metres goes into output 1 and 10,000 into output
2, and purchase 23,000 cubic metres of input 2, of which 3,000 goes into output
1, and 20,000 goes into output 2, thereby producing a total of 18,000 cubic metres
of output 1 and 30,000 cubic metres of output 2, for a contribution to profit of
$1,531,000.

3.2 Scheduling

The example below on scheduling police constables covers this subject, but we
also present for optional use a more complex example involving the scheduling of
telephone operators.

3.2.1 Scheduling of Police Constables

Description

Members of the Constabulary work twelve hour shifts, beginning at midnight, 3
a.m, 6 a.m, 9 a.m., noon, 3 p.m., 6 p.m., or 9 p.m. On a 24-hour clock basis, we
would say that these shifts begin at 00, 03, 06, 09, 12, 15, 18, and 21 hours. These
eight shifts are displayed in Figure 3.1.

Since crime and traffic depend on the time of day, so does the minimum num-
ber of constables needed:
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Figure 3.1: Constable Shifts on a 24 Hour Day

Minimum Number
Time of Day of Constables

00 – 03 195
03 – 06 100
06 – 09 160
09 – 12 110
12 – 15 115
15 – 18 135
18 – 21 120
21 – 24 160

Model to Minimize the Number of Constables

To keep this problem simple, let’s suppose that all constables are paid the same,
and since each works twelve hours, it suffices to minimize the total number of
constables over the course of the day, subject to meeting the requirements. Note
that the optimal plan may mean that at some times of the day, we might have more
constables working than are needed. Let’s also assume that each day is the same.

Let Xi = the number of constables who work on shift i (i = 1, . . . ,8), where
shift 1 is the period 00 – 12, shift 2 is 03 – 15, and so on, with shift 8 being 21 –
09. Equivalently, shift i (i = 1, . . . ,8) is as shown on Figure 3.1.

The objective is to minimize the total number of constables, which is:

X1 +X2 +X3 +X4 +X5 +X6 +X7 +X8
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or
8

∑
i=1

Xi

In the first period of the day, from hours 00 to 03, the constables who are working
are those who started at midnight (X1) and also all those who started work on
the previous day at hour 15 (X6), hour 18 (X7), or hour 21 (X8). Hence the total
number of constables working from hours 00 to 03 is X1+X6+X7+X8. This sum
must be at least the required number of constables in that time period, which is
195. Hence the constraint for hours 00 to 03 is:

X1 +X6 +X7 +X8 ≥ 195

.
In the second period of the day, from hours 03 to 06, we gain the workers who

have just begun their shift (X2), but lose those who began at hour 15 the previous
day (X6). Therefore the number of constables on duty from hours 03 to 06 is
X1 +X2 +X7 +X8. Since we need a minimum of 100 constables during that time,
we require that:

X1 +X2 +X7 +X8 ≥ 100

There will be eight constraints in total. At the end, we need to note that the
solution must be integer. We could write that all variables must be≥ 0 and integer,
or that they must be ∈ {0,1,2, . . .}.

minimize
8

∑
i=1

Xi

subject to
00 – 03 X1 +X6 +X7 +X8 ≥ 195
03 – 06 X1 +X2 +X7 +X8 ≥ 100
06 – 09 X1 +X2 +X3 +X8 ≥ 160
09 – 12 X1 +X2 +X3 +X4 ≥ 110
12 – 15 X2 +X3 +X4 +X5 ≥ 115
15 – 18 X3 +X4 +X5 +X6 ≥ 135
18 – 21 X4 +X5 +X6 +X7 ≥ 120
21 – 24 X5 +X6 +X7 +X8 ≥ 160

all Xi ∈ {0,1,2, . . .}
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Every term in the objective function has a coefficient of 1,6 hence this model
is entered into Excel as:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

A B C D E F G H I J K L

OFV Minimal Constable Staffing Model
0 X1 X2 X3 X4 X5 X6 X7 X8

Minimize 1 1 1 1 1 1 1 1
Constables

Time Periods RHS
00 to 03 1 1 1 1 0 >= 195
03 to 06 1 1 1 1 0 >= 100
06 to 09 1 1 1 1 0 >= 160
09 to 12 1 1 1 1 0 >= 110
12 to 15 1 1 1 1 0 >= 115
15 to 18 1 1 1 1 0 >= 135
18 to 21 1 1 1 1 0 >= 120
21 to 24 1 1 1 1 0 >= 160

In cell J8, we enter =SUMPRODUCT(B$5:I$5,B8:J8), and then copy this into
the range J8:J15. The only thing that is new from what we saw in the previous
chapter is that we must tell the Solver that the variables must be integer. To do
this we use the Add Constraint dialog box, declaring the range B5:I5 to be “int”
(middle box), which causes the word “integer” to be automatically entered into
the right box.

6In this example, we could have omitted the 1’s in row 4, and simply have entered
=SUM(B3:I3) into cell A3, but for consistency with the other Excel models we kept the 1’s and
used the SUMPRODUCT function.
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Actually, this particular example is naturally integer, meaning that we would have
obtained an integer solution even without this declaration, but there‘s no way to
know this in advance. The entire Solver Parameters dialog box is:

Solving we obtain:
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1
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9

10
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15

A B C D E F G H I J K L

OFV Minimal Constable Staffing Model
310 X1 X2 X3 X4 X5 X6 X7 X8

Minimize 1 1 1 1 1 1 1 1
Constables 150 0 0 0 115 35 0 10

Time Periods RHS
00 to 03 1 1 1 1 195 >= 195
03 to 06 1 1 1 1 160 >= 100
06 to 09 1 1 1 1 160 >= 160
09 to 12 1 1 1 1 150 >= 110
12 to 15 1 1 1 1 115 >= 115
15 to 18 1 1 1 1 150 >= 135
18 to 21 1 1 1 1 150 >= 120
21 to 24 1 1 1 1 160 >= 160

Hence, 150 constables begin their shift at midnight, followed by 115 at noon,
another 35 at 3 p.m,, and finally another 10 at 9 p.m. Though this is the optimal
solution, at some times in the day there are many more constables on duty than
are required, especially from 9 a.m. to noon. This would be a good time to let the
constables attend to other things, such as medical appointments.

Scheduling Constables with Shift Premiums

In the previous section, since all shifts had equal pay, we simply minimized the
total number of constables. Now suppose that all constables earn a base rate of
$45 per hour, but are paid a bonus of $9 per hour when working from midnight
to 6 a.m. Now the objective function will be in dollars, instead of the number of
constables.

One way to approach this would be to calculate what each constable is paid
on each of the eight shifts. Everyone is paid a base rate of $45(12) = $540. Since
shifts 3, 4, and 5 all work outside of the bonus period, their coefficients in the
objective function will all be 540. Those who work on shifts 2 and 6 work three
hours in the bonus period, and so are paid an extra $9(3) = $27 for a total of $567.
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Finally, those who work on shifts 1, 7, and 8 work six hours in the bonus period,
and so they make an extra $9(6) = $54 for a total of $594. Using this approach,
the objective function would be:

minimize 594X1 +567X2 +540X3 +540X4 +540X5 +567X6 +594X7 +594X8

While this is correct, there are three disadvantages to doing things this way. First,
there is a loss of transparency, because the $45 and the $9 are not visible to some-
one looking at either the algebraic model or the spreadsheet model. Secondly,
if the $45 or the $9 were to change, it would involve the recalculation of all the
objective function coefficients. Thirdly, the calculation of these coefficients is a
potential source of error.

The other approach is to define two new variables. Since the $45 per hour
is always paid, it makes sense to define a variable for the total number of hours
worked; we let this variable be H1. We define H2 to be the number of hours
worked for which the bonus is paid. The objective function is simply

minimize 45H1 +9H2

We need to add two constraints to the model. The first defines the total number of
hours:

H1 = 12X1 +12X2 +12X3 +12X4 +12X5 +12X6 +12X7 +12X8

Equivalently, we could write:

H1 = 12(X1 +X2 +X3 +X4 +X5 +X6 +X7 +X8)

or even

H1 = 12

(
8

∑
i=1

Xi

)
We put the variables on the left. We can either do this with one positive coefficient
and eight negative ones, or one negative coefficient and eight positive ones. Doing
the latter we obtain:

−H1 +12

(
8

∑
i=1

Xi

)
= 0

As we have said, those who work on shifts 1, 7, and 8 earn the bonus for 6 hours
(midnight to 6 a.m.), and those who work on shift 2 and 6 earn it for 3 hours.
Hence we have

H2 = 6X1 +3X2 +3X6 +6X7 +6X8
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Putting all the variables in standard form we obtain:

−H2 +6X1 +3X2 +3X6 +6X7 +6X8 = 0

Variables H1 and H2 will turn out to be integer, because they are obtained by
multiplying integer variables by integers. However, there is no need to declare
them as such.7 Hence the new algebraic model is:

minimize 45H1 +9H2
subject to

Balance on Hours
Total −H1 +12

(
∑

8
i=1 Xi

)
= 0

Bonus Pay −H2 +6X1 +3X2 +3X6 +6X7 +6X8 = 0
Staffing by Time of Day

00 – 03 X1 +X6 +X7 +X8 ≥ 195
03 – 06 X1 +X2 +X7 +X8 ≥ 100
06 – 09 X1 +X2 +X3 +X8 ≥ 160
09 – 12 X1 +X2 +X3 +X4 ≥ 110
12 – 15 X2 +X3 +X4 +X5 ≥ 115
15 – 18 X3 +X4 +X5 +X6 ≥ 135
18 – 21 X4 +X5 +X6 +X7 ≥ 120
21 – 24 X5 +X6 +X7 +X8 ≥ 160

H1,H2 ≥ 0
all Xi ∈ {0,1,2, . . .}

In the Excel spreadsheet which follows the formula in cell B3 is
=SUMPRODUCT(C4:L4,C5:L5), and the formula in cell M7 which is copied
into the range M7:M16 is =SUMPRODUCT($C$5:$L$5,C7:L7).

7Indeed if constables could work say 4.5 hours at the bonus rate, then variables H1 and H2
would have to be continuous rather than integer.
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A B C D E F G H I J K L M N O

OFV Minimal Cost Constable Staffing Model
$0.00 H1 H2 X1 X2 X3 X4 X5 X6 X7 X8

Minimize 45 9 0 0 0 0 0 0 0 0

Constraints
Balance Total -1 0 12 12 12 12 12 12 12 12 0 = 0
on Hours Bonus Pay 0 -1 6 3 3 6 6 0 = 0

00 to 03 1 1 1 1 0 >= 195
03 to 06 1 1 1 1 0 >= 100

Time 06 to 09 1 1 1 1 0 >= 160
Periods 09 to 12 1 1 1 1 0 >= 110

12 to 15 1 1 1 1 0 >= 115
15 to 18 1 1 1 1 0 >= 135
18 to 21 1 1 1 1 0 >= 120
21 to 24 1 1 1 1 0 >= 160

We minimize cell B3, with M7:M8 = O7:O8, M9:M16 ≥ O9:O16, and E5:L5
declared to be integer. The solution is:
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A B C D E F G H I J K L M N O

OFV Minimal Cost Constable Staffing Model
$175,365.00 H1 H2 X1 X2 X3 X4 X5 X6 X7 X8

Minimize 45 9 0 0 0 0 0 0 0 0
3720 885 75 0 115 0 0 95 25 0

Constraints
Balance Total -1 0 12 12 12 12 12 12 12 12 0 = 0
on Hours Bonus Pay 0 -1 6 3 3 6 6 0 = 0

00 to 03 1 1 1 1 195 >= 195
03 to 06 1 1 1 1 100 >= 100

Time 06 to 09 1 1 1 1 190 >= 160
Periods 09 to 12 1 1 1 1 190 >= 110

12 to 15 1 1 1 1 115 >= 115
15 to 18 1 1 1 1 210 >= 135
18 to 21 1 1 1 1 120 >= 120
21 to 24 1 1 1 1 120 >= 160

The optimal solution is to have 75 constables beginning to work at midnight,
115 beginning at 6 a.m., 95 beginning at 3 p.m., and 25 beginning at 6 p.m. The
total of 310 constables work 3,720 hours, of which 885 hours are paid the night-
time bonus, with a total daily cost of $175,365.

3.2.2 Telephone Operator Problem (Optional)
Real-life employee scheduling problems are much more complex than the preced-
ing example. In the following example, we make the need for employees based
on each hour of a 24-hour day. Also, we add one new factor, that of accounting
for lunch breaks. These two changes lead to a much larger model.

Description

The collective bargaining agreement between a telephone company and the union
which represents its employees states that each operator works an eight hour shift,
with a one-hour break during either the fourth or the fifth hour of the shift. An
employee’s shift can begin at midnight, 2 a.m., 4 a.m., 6 a.m., 8 a.m., 10 a.m.,
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noon, 2 p.m., 4 p.m., 6 p.m., 8 p.m., or 10 p.m. The company has the right to
decide how many persons will begin their shifts at these specified times, and how
many within each shift take an early or late break. The employees can bid on these
shifts according to seniority.

The telephone company has set a standard for operator response time. This
standard, combined with the anticipated customer demand which varies according
to the time of day, gives rise to a minimum number of operators needed each hour.
On a 24 hour clock basis the requirements are:

Hour of the Day 1 2 3 4 5 6 7 8
Minimum Number of Operators 5 3 2 2 2 3 4 4
Hour of the Day 9 10 11 12 13 14 15 16
Minimum Number of Operators 7 12 15 20 25 24 18 16
Hour of the Day 17 18 19 20 21 22 23 24
Minimum Number of Operators 20 10 8 6 6 5 5 5

To keep the context simple, we will assume that each day’s requirements are
the same. Also, we will ignore the fact that to more accurately reflect a real-world
problem, an operator would have to be scheduled for a week with two days off;
we will simply treat this as a one-day problem.

Given management’s obligations and flexibility as allowed by the collective
bargaining agreement, and given the market driven demand for telephone oper-
ators, what is the minimum number of operators needed each day? If we can
answer this question, we will also know how to minimize the wastage of employ-
ees resulting from more employees being at work than are required. Neither of
these two related issues requires a knowledge of what the hourly rate of pay is. Of
course, minimizing cost would be the objective if shift premiums (e.g. for night
shifts) were to be paid. An example of such a situation appears at the end of this
section.

Formulation

In problems such as this it is useful to index the shifts. One way is to ignore
the lunch breaks and just consider the hours during which an employee is on the
telephone company’s premises. Another approach would consider two employees
who commence work at the same time but who take different lunch breaks to be
working distinct shifts. The first approach yields twelve shifts, the second yields
twenty-four. Adopting the first approach the shifts are:
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Shift # Hours
1 midnight - 8 a.m.
2 2 a.m. - 10 a.m.
3 4 a.m. - noon
4 6 a.m. - 2 p.m.
5 8 a.m. - 4 p.m.
6 10 a.m. - 6 p.m.
7 noon - 8 p.m.
8 2 p.m. - 10 p.m.
9 4 p.m. - midnight

10 6 p.m. - 2 a.m.
11 8 p.m. - 4 a.m.
12 10 p.m. - 6 a.m.

Let Xi = the number of operators who work on shift i, and who take an early
break (i = 1,2, . . . ,12).

Let Yi = the number of operators who work on shift i, and who take a late
break (i = 1,2, . . . ,12).

In order to answer the question of determining the minimum number of oper-
ators required, the appropriate objective function is:

minimize
12

∑
i=1

(Xi +Yi).

There is a constraint for each hour of the day. Each constraint will ensure
that the actual number of operators working during a particular hour will meet
or exceed the minimal staffing requirement during that hour. For example, in the
first hour of the day (midnight to 1 a.m.), the employees working are those who
began at midnight (of whom there are X1 +Y1), plus those who began to work at
any time on or after 6 p.m. of the previous day, except for those who began at 8
p.m. and who are taking a late lunch break. Hence the total number of employees
working from midnight to 1 a.m. is X1 +Y1 +X10 +Y10 +X11 +X12 +Y12. (Note
the exclusion of Y11 from this list, since these employees are on their break.) The
minimal staffing requirement for the first hour is five operators, hence we require
that:

X1 +Y1 +X10 +Y10 +X11 +X12 +Y12 ≥ 5

In the second hour, the employees who were on their break have returned to work
(Y11), and the employees who began at 10 p.m. who take an early break (there are
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Legend: Thick lines – Working; ⊗ – Break
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Figure 3.2: Operator Shifts on a 24 Hour Day
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X12 of them) are now on their break. Since at least three operators are required in
the second hour, the second constraint is:

X1 +Y1 +X10 +Y10 +X11 +Y11 +Y12 ≥ 3

In the third hour, the employees who began at 6 p.m. (X10 +Y10) have finished
work, and X2 +Y2 have just begun. Making an adjustment for those who end or
begin a break at 3 a.m., the third hour constraint is:

X1 +Y1 +X2 +Y2 +X11 +Y11 +X12 ≥ 2

We could continue to determine the other twenty-one constraints in this manner,
but it is helpful to draw a diagram to help understand how the shifts look. This
diagram is shown in Figure 3.2.

Each column of this figure gives the overlap of the workers for a particular
hour. We see that for each hour there are seven sets of operators. From this figure
we obtain the other twenty-one constraints.

As with all the models that we have seen so far, there will be non-negativity re-
strictions on the variables. In addition, because these variables represent numbers
of people, each of them must be integer. We therefore say that each variable must
be contained in the set of positive integers, either by writing ∈ {0,1,2,3, . . .}, or
by writing ≥ 0 and ∈ I.

Combining the objective function, the twenty-four constraints, and the non-
negativity and integer restrictions yields:
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minimize
12

∑
i=1

(Xi +Yi)

subject to
Staffing in

Hour 1 X1 +Y1 +X10 +Y10 +X11 +X12 +Y12 ≥ 5
Hour 2 X1 +Y1 +X10 +Y10 +X11 +Y11 +Y12 ≥ 3
Hour 3 X1 +Y1 +X2 +Y2 +X11 +Y11 +X12 ≥ 2
Hour 4 Y1 +X2 +Y2 +X11 +Y11 +X12 +Y12 ≥ 2
Hour 5 X1 +X2 +Y2 +X3 +Y3 +X12 +Y12 ≥ 2
Hour 6 X1 +Y1 +Y2 +X3 +Y3 +X12 +Y12 ≥ 3
Hour 7 X1 +Y1 +X2 +X3 +Y3 +X4 +Y4 ≥ 4
Hour 8 X1 +Y1 +X2 +Y2 +Y3 +X4 +Y4 ≥ 4
Hour 9 X2 +Y2 +X3 +X4 +Y4 +X5 +Y5 ≥ 7

Hour 10 X2 +Y2 +X3 +Y3 +Y4 +X5 +Y5 ≥ 12
Hour 11 X3 +Y3 +X4 +X5 +Y5 +X6 +Y6 ≥ 15
Hour 12 X3 +Y3 +X4 +Y4 +Y5 +X6 +Y6 ≥ 20
Hour 13 X4 +Y4 +X5 +X6 +Y6 +X7 +Y7 ≥ 25
Hour 14 X4 +Y4 +X5 +Y5 +Y6 +X7 +Y7 ≥ 24
Hour 15 X5 +Y5 +X6 +X7 +Y7 +X8 +Y8 ≥ 18
Hour 16 X5 +Y5 +X6 +Y6 +Y7 +X8 +Y8 ≥ 16
Hour 17 X6 +Y6 +X7 +X8 +Y8 +X9 +Y9 ≥ 20
Hour 18 X6 +Y6 +X7 +Y7 +Y8 +X9 +Y9 ≥ 10
Hour 19 X7 +Y7 +X8 +X9 +Y9 +X10 +Y10 ≥ 8
Hour 20 X7 +Y7 +X8 +Y8 +Y9 +X10 +Y10 ≥ 6
Hour 21 X8 +Y8 +X9 +X10 +Y10 +X11 +Y11 ≥ 6
Hour 22 X8 +Y8 +X9 +Y9 +Y10 +X11 +Y11 ≥ 5
Hour 23 X9 +Y9 +X10 +X11 +Y11 +X12 +Y12 ≥ 5
Hour 24 X9 +Y9 +X10 +Y10 +Y11 +X12 +Y12 ≥ 5

all variables must be ≥ 0 and ∈ I

Solution of the Model

We put this formulation onto a spreadsheet. Here are a few points relevant to this
example:

1. We can write the formula in cell A3 as =SUMPRODUCT(B4:Y4,B5:Y5)
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However, since every number in the range B4:Y4 is a 1, the formula =SUM(B5:Y5)
would work as well.

2. We enter =SUMPRODUCT($B$5:$Y$5,B8:Y8) into cell Z8, and copy
this into the range Z8:Z31.

3. In the Solver, since all constraints are of the ≥ form, we add them all at
once:

Transforming the algebraic model to a spreadsheet model, and then optimizing
using the Solver we obtain:
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A B C D E F G H I J K L M

OFV Minimal Telephone Operator Staffing Model

37 X1 Y1 X2 Y2 X3 Y3 X4 Y4 X5 Y5 X6 Y6

Minimize 1 1 1 1 1 1 1 1 1 1 1 1

Operators 0 0 0 0 0 0 0 7 2 3 4 6

Constraints

Hour 1 1 1

Hour 2 1 1

Hour 3 1 1 1 1

Hour 4 1 1 1

Hour 5 1 1 1 1 1

Hour 6 1 1 1 1 1
Hour 7 1 1 1 1 1 1 1

Hour 8 1 1 1 1 1 1 1

Hour 9 1 1 1 1 1 1 1

Hour 10 1 1 1 1 1 1 1

Hour 11 1 1 1 1 1 1 1

Hour 12 1 1 1 1 1 1 1

Hour 13 1 1 1 1 1

Hour 14 1 1 1 1 1

Hour 15 1 1 1

Hour 16 1 1 1 1

Hour 17 1 1

Hour 18 1 1

Hour 19

Hour 20

Hour 21

Hour 22

Hour 23

Hour 24
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N O P Q R S T U V W X Y Z AA AB

X7 Y7 X8 Y8 X9 Y9 X10 Y10 X11 Y11 X12 Y12

1 1 1 1 1 1 1 1 1 1 1 1

6 0 0 3 1 0 1 0 1 0 2 1

RHS

1 1 1 1 1 5 >= 5

1 1 1 1 1 3 >= 3

1 1 1 3 >= 2

1 1 1 1 4 >= 2

1 1 3 >= 2

1 1 3 >= 3
7 >= 4

7 >= 4

12 >= 7

12 >= 12

15 >= 15

20 >= 20

1 1 25 >= 25

1 1 24 >= 24

1 1 1 1 18 >= 18

1 1 1 18 >= 16

1 1 1 1 1 20 >= 20

1 1 1 1 1 20 >= 10

1 1 1 1 1 1 1 8 >= 8

1 1 1 1 1 1 1 10 >= 6

1 1 1 1 1 1 1 6 >= 6

1 1 1 1 1 1 1 5 >= 5

1 1 1 1 1 1 1 6 >= 5

1 1 1 1 1 1 1 5 >= 5

This example is naturally integer, so whether or not we invoked the int command
in the Solver we obtain an integer solution. The algebraic solution is: OFV =
37, Y4 = 7, X5 = 2, Y5 = 3, X6 = 4, Y6 = 6, X7 = 6, Y8 = 3, X9 = 1, X10 = 1,
X11 = 1, X12 = 1, and Y12 = 1. Note that there may be multiple optima, meaning
that there’s another solution with different values for the variables, but with the
same objective function value of 37.



3.2. SCHEDULING 119

The managerial solution is: We require 37 operators in total. At 6 a.m., seven
persons begin their shift, and all of these take a late lunch. Five people begin at 8
a.m., two with an early lunch and three with a late lunch. Ten people start at 10
a.m., four with an early lunch and six with a late lunch. Six people begin at 12
noon, and all of these take an early lunch. Three people begin at 2 p.m., and all
of these take a late lunch. One person begins at each of 4 p.m., 6 p.m., and 8 a.m.
and all these persons take an early lunch. Finally three people begin at 10 p.m.,
with two on an early lunch and one on a late lunch.

It is interesting to examine the surplus (“Slack” on the Excel Solver) on each
constraint. From the Answer Report we see that ten of the twenty-four are strictly
positive, with the largest being 10 in the 18th hour (5 to 6 p.m.). If occasionally
some of the employees need an hour off for medical exams, safety talks and so
on, this would be a good time for it. The sum of the surpluses, which is 32, means
that there is a total of 32 person-hours paid for but not required each day. This is
out of a total of 37× 8 = 296 person-hours each day, hence the “waste” is about
10.8%. Knowing this figure gives the union and management information about
the benefits of more flexible work-rules.

An Alternate Objective

Suppose that the constraints are the same as before, but now the objective is to
minimize the cost of labour, where each operator is paid a base rate of $30 per
hour in wages and benefits, and a night shift premium of $6 per hour in wages and
benefits between 10 p.m. and 6 a.m. (We assume that the break hour is also paid.)

Since the $30 per hour is always paid, it makes sense to define H1 as the total
number of hours worked. We define H2 to be the number of hours worked for
which the bonus is paid. The objective function is simply

minimize 30H1 +6H2

We need to add two constraints to the model. The first defines the total number of
hours:

H1 = 8

(
12

∑
i=1

(Xi +Yi)

)
We put the variables on the left. We can either do this with one positive coeffi-
cient and twenty-four negative ones, or one negative coefficient and twenty-four



120 CHAPTER 3. APPLICATIONS OF LINEAR MODELS

positive ones. Doing the latter we obtain:

−H1 +8

(
12

∑
i=1

(Xi +Yi)

)
= 0

The expression for H2 requires a bit more thought. Those who work on shift 1
earn the bonus for 6 hours (midnight to 6 a.m.); those who work on shift 2 earn it
for 4 hours, and so on. Hence we have

H2 = 6X1 +6Y1 +4X2 +4Y2 +2X3 +2Y3

+2X9 +2Y9 +4X10 +4Y10 +6X11 +6Y11 +8X12 +8Y12

Putting all the variables in standard form we obtain:

−H2 +6X1 +6Y1 +4X2 +4Y2 +2X3 +2Y3

+2X9 +2Y9 +4X10 +4Y10 +6X11 +6Y11 +8X12 +8Y12 = 0

Variables H1 and H2 need not be integer, though as before all the X and Y variables
must be integer. Hence the new algebraic model is:
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minimize 30H1 +6H2
subject to

Balance on H1 −H1 +8
(
∑

12
i=1(Xi +Yi)

)
= 0

Balance on H2 −H2 +6X1 +6Y1 +4X2 +4Y2 +2X3
+2Y3 +2X9 +2Y9 +4X10 +4Y10

+6X11 +6Y11 +8X12 +8Y12 = 0
Staffing in

Hour 1 X1 +Y1 +X10 +Y10 +X11 +X12 +Y12 ≥ 5
Hour 2 X1 +Y1 +X10 +Y10 +X11 +Y11 +Y12 ≥ 3
Hour 3 X1 +Y1 +X2 +Y2 +X11 +Y11 +X12 ≥ 2
Hour 4 Y1 +X2 +Y2 +X11 +Y11 +X12 +Y12 ≥ 2
Hour 5 X1 +X2 +Y2 +X3 +Y3 +X12 +Y12 ≥ 2
Hour 6 X1 +Y1 +Y2 +X3 +Y3 +X12 +Y12 ≥ 3
Hour 7 X1 +Y1 +X2 +X3 +Y3 +X4 +Y4 ≥ 4
Hour 8 X1 +Y1 +X2 +Y2 +Y3 +X4 +Y4 ≥ 4
Hour 9 X2 +Y2 +X3 +X4 +Y4 +X5 +Y5 ≥ 7

Hour 10 X2 +Y2 +X3 +Y3 +Y4 +X5 +Y5 ≥ 12
Hour 11 X3 +Y3 +X4 +X5 +Y5 +X6 +Y6 ≥ 15
Hour 12 X3 +Y3 +X4 +Y4 +Y5 +X6 +Y6 ≥ 20
Hour 13 X4 +Y4 +X5 +X6 +Y6 +X7 +Y7 ≥ 25
Hour 14 X4 +Y4 +X5 +Y5 +Y6 +X7 +Y7 ≥ 24
Hour 15 X5 +Y5 +X6 +X7 +Y7 +X8 +Y8 ≥ 18
Hour 16 X5 +Y5 +X6 +Y6 +Y7 +X8 +Y8 ≥ 16
Hour 17 X6 +Y6 +X7 +X8 +Y8 +X9 +Y9 ≥ 20
Hour 18 X6 +Y6 +X7 +Y7 +Y8 +X9 +Y9 ≥ 10
Hour 19 X7 +Y7 +X8 +X9 +Y9 +X10 +Y10 ≥ 8
Hour 20 X7 +Y7 +X8 +Y8 +Y9 +X10 +Y10 ≥ 6
Hour 21 X8 +Y8 +X9 +X10 +Y10 +X11 +Y11 ≥ 6
Hour 22 X8 +Y8 +X9 +Y9 +Y10 +X11 +Y11 ≥ 5
Hour 23 X9 +Y9 +X10 +X11 +Y11 +X12 +Y12 ≥ 5
Hour 24 X9 +Y9 +X10 +Y10 +Y11 +X12 +Y12 ≥ 5

H1,H2 ≥ 0
all Xi and Yi ∈ {0,1,2,3, . . .}

This model is put into spreadsheet form and is optimized using the Solver. We
know that we must declare the Xi and Yi variables to be int, but first we find out
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what happens if do not do this.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

A B C D E F G H I J K L M N

OFV Cost Minimization Telephone Operator Staffing Model

$9,080.00 H1 H2 X1 Y1 X2 Y2 X3 Y3 X4 Y4 X5 Y5 X6

Minimize 30 6 0 0 0 0 0 0 0 0 0 0 0

Operators 296 33.3 0 0 0 0 0 0 0 4 5.33 2.67 3.67

Constraints

Balance H1 ‐1 8 8 8 8 8 8 8 8 8 8 8

Balance H2 ‐1 6 6 4 4 2 2

Hour 1 1 1

Hour 2 1 1

Hour 3 1 1 1 1

Hour 4 1 1 1

Hour 5 1 1 1 1 1

Hour 6 1 1 1 1 1

Hour 7 1 1 1 1 1 1 1

Hour 8 1 1 1 1 1 1 1

Hour 9 1 1 1 1 1 1 1

Hour 10 1 1 1 1 1 1 1

Hour 11 1 1 1 1 1 1

Hour 12 1 1 1 1 1 1

Hour 13 1 1 1 1

Hour 14 1 1 1 1

Hour 15 1 1 1

Hour 16 1 1 1

Hour 17 1

Hour 18 1

Hour 19

Hour 20

Hour 21

Hour 22

Hour 23

Hour 24
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1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

O P Q R S T U V W X Y Z AA AB AC AD

Y6 X7 Y7 X8 Y8 X9 Y9 X10 Y10 X11 Y11 X12 Y12

0 0 0 0 0 0 0 0 0 0 0 0 0

9.67 2.33 0 3.67 0.33 0 0.33 1.33 0.33 0.33 0 1.67 1.33

RHS

8 8 8 8 8 8 8 8 8 8 8 8 8 0 = 0

2 2 4 4 6 6 8 8 ‐0 = 0

1 1 1 1 1 5 >= 5

1 1 1 1 1 3.3 >= 3

1 1 1 2 >= 2

1 1 1 1 3.3 >= 2

1 1 3 >= 2

1 1 3 >= 3

4 >= 4

4 >= 4

12 >= 7

12 >= 12

1 21 >= 15

1 20 >= 20

1 1 1 25 >= 25

1 1 1 24 >= 24

1 1 1 1 18 >= 18

1 1 1 1 25 >= 16

1 1 1 1 1 1 20 >= 20

1 1 1 1 1 1 16 >= 10

1 1 1 1 1 1 1 8 >= 8

1 1 1 1 1 1 1 8.3 >= 6

1 1 1 1 1 1 1 6 >= 6

1 1 1 1 1 1 1 5 >= 5

1 1 1 1 1 1 1 5 >= 5

1 1 1 1 1 1 1 5 >= 5

We this that this solution contains fractional values for some of the Xi and Yi
variables, which is not what we want. From the Excel Solver we obtain OFV =
$9080.00, H1 = 296, H2 = 331

3 , X5 = 51
3 , Y5 = 22

3 , X6 = 32
3 , Y6 = 92

3 , X7 = 21
3 ,
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X8 = 32
3 , Y8 =

1
3 Y9 =

1
3 , X10 = 11

3 , Y10 =
1
3 , X11 =

1
3 , X12 = 12

3 , Y12 = 11
3 , with all

other variables being 0.
We use the Solver in Excel to force the variables to have integer values as

follows:.

1. Open the Solver, and click on “Add”.

2. The “Add Constraint” dialog box appears, with a blinker in the space below
“Cell Reference:”.

3. Use the mouse to highlight the variable cells (in this example, this is D5:AA5.
The expression $D$5:$AA$5 will appear in the space.

4. In the middle where the “<=” appears, click on the down arrow to the right,
and then click on “int”.

5. The “<=” will be replaced by “int”, and “integer” will appear in the space
to the right.

6. Click on “OK”.

7. In the “Solver Parameters” dialog box, $D$5:$AA$5 = integer will
appear in the “Subject to the Constraints” section.

8. Click on the Solve button.

Doing the above the integer solution is found to be:

3

4

5

A B C D E F G H I J K L M

$9,084.00 H1 H2 X1 Y1 X2 Y2 X3 Y3 X4 Y4 X5 Y5

Minimize 30 6 0 0 0 0 0 0 0 0 0 0

Operators 296 34 0 0 0 0 1 0 0 5 3 3

3

4

5

N O P Q R S T U V W X Y Z AA

X6 Y6 X7 Y7 X8 Y8 X9 Y9 X10 Y10 X11 Y11 X12 Y12

0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 7 6 0 0 2 1 0 1 1 1 0 1 1
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The integer declaration causes the OFV to increase from $9,080 to $9,084.
The optimal values for the decision variables are now H1 = 296, H2 = 34, X3 = 1,
Y4 = 5, X5 = 3, Y5 = 3, X6 = 4, Y6 = 7, X7 = 6, Y8 = 2, X9 = 1, X10 = 1, Y10 = 1,
X11 = 1, X12 = 1, Y12 = 1, all other variables being 0.

The managerial recommendation is: One person begins at 4 a.m. and takes an
early lunch break; five persons begin at 6 a.m. and take a late lunch break; six
people begin at 8 a.m. three take an early lunch and three take a late lunch; eleven
people begin at 10 a.m., four take an early lunch and seven take a late lunch; six
people begin at 12 noon, all of whom take an early lunch; two people begin at 2
p.m., both of whom take a late lunch; one person begins at 4 p.m. and takes an
early lunch; two persons begin at 6 p.m., one on an early lunch and one on a late
lunch; one person begins at 8 p.m. and takes an early lunch; two persons begin at
10 p.m., one on an early lunch and one on a late lunch. The cost of this optimal
solution is $9,084.

It so happens that this solution employs a total 37 operators, as in the original
model where costs are not considered. However, some of them are re-allocated in
order to minimize the total labour cost. (Clearly, the previous model has multiple
integer optimal solutions).

3.3 Production Planning Models
When the demand for a product fluctuates over time, the amount produced over
time can fluctuate in tandem with the demand, or it may be smooth and instead
an inventory is built up in periods of low demand and drawn down in periods
of high demand. Between the extreme policies of exactly matching production
with demand on the one hand, or a constant rate of production on the other, lie
a multiplicity of intermediate policies. The first extreme is most closely attained
when a product cannot be kept in inventory – for example, hot dogs at a baseball
stadium. The second extreme is most closely attained when the cost of changing
the level of production is very high – for example, the smelting of aluminium.
In this section we will develop some linear models of production and inventory
levels.

3.3.1 A Simple Inventory Model
Tools R Us makes a precision tool for the oil industry. Standard practice in this
specialized tool market is to place orders six months in advance of the desired
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delivery. Hence Tools R Us knows that the demand over the next six months will
be:

Sep. Oct. Nov. Dec. Jan. Feb.
740 800 280 470 630 510

It is now August 1. Based on what has already been planned for this month,
the inventory of this tool as of August 31 will be 300 units. Up to 600 units can be
manufactured each month based on each employee working on regular time. Each
unit costs $67 if manufactured on regular time. It is also possible to manufacture
up to 150 units on overtime. Each unit so produced costs $95.

Tools can be kept in inventory at a cost of $2 per unit per month. This charge
represents the cost of tied-up capital, warehouse, and insurance expenses. As a
buffer against potentially high demand at the end of the planning horizon, the
ending inventory should be at least 200 units.

With the restriction that all customers’ orders must be completed on time, we
wish to formulate a model which seeks to minimize the sum of production and
inventory costs.

3.3.2 Formulation
Since this problem deals with months, we will index the months so that we can
refer to the index rather than the name of the calendar month. We will use the
index t, where t = 1 means September and t = 6 means February. In problems
such as this the initial conditions are important: the month of August is denoted
as t = 0.

For each month we must decide how many units are to be produced on regular
time, and how many are to be produced on overtime. Rather than use the symbolic
name X , we will name the variables in a manner which helps us to recall what they
represent. We define:

Rt = the number of tools produced on regular time in month t, where t =
1, . . . ,6.

Ot = the number of tools produced on overtime in month t, where t = 1, . . . ,6.
The inventory must be known each month. It is important to distinguish how

the inventory is measured, be it the beginning, ending, average, or other measure.
We define

It = the number of units in inventory at the end of month t, where t = 1, . . . ,6.
Although it is not, strictly speaking, a variable, it is useful to think of the inventory
at the end of August being represented as I0.



3.3. PRODUCTION PLANNING MODELS 127

The objective function is:

minimize
6

∑
t=1

(67Rt +95Ot +2It)

The constraints are of two types. The first and easier type are the capacity
constraints; there are twelve of these, six for regular time and six for overtime.

Rt ≤ 600 (t = 1, . . . ,6)

Ot ≤ 150 (t = 1, . . . ,6)

The second type of constraint exists, in part, to satisfy the customer require-
ments. In each month, the initial inventory plus the amount produced during the
month must meet or exceed the customer requirements for that month. Hence in
the first month we have

I0 +R1 +O1 ≥ 740

Following this argument, in the second month we have

I1 +R2 +O2 ≥ 800

However, I1 cannot simply take on any value but instead must represent the
difference between the left hand side and the right hand side of the previous con-
straint. In other words, in month 1 the variables must balance in an equality
constraint of the form:

I0 +R1 +O1 = 740+ I1

Putting this into the standard form where all variables appear on the left we
obtain:

I0 +R1 +O1− I1 = 740 (3.1)

Such a constraint is commonly called an inventory balance constraint. Since
I0 appears in this constraint, we also need the constraint

I0 = 300
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Alternatively, the 300 units of initial inventory can be imbedded in the month 1
inventory balance constraint to yield

R1 +O1− I1 = 440

Doing it this way, however, obscures the original data on initial inventory and
September demand, which weakens the benefits of sensitivity analysis. Therefore,
we prefer the format of Equation 3.1.

Similarly, the other five inventory balance constraints are:

I1 +R2 +O2− I2 = 800
I2 +R3 +O3− I3 = 280
I3 +R4 +O4− I4 = 470
I4 +R5 +O5− I5 = 630
I5 +R6 +O6− I6 = 510

Finally, we require that I6 ≥ 200, and all variables must be non-negative. The
complete formulation has nineteen variables and twenty constraints (Note: each
of the first two rows after “subject to” uses one line to define six constraints):

minimize
6

∑
t=1

(67Rt +95Ot +2It)

subject to
Regular time production Rt ≤ 600 (t = 1, . . . ,6)

Overtime production Ot ≤ 150 (t = 1, . . . ,6)
Initial inventory I0 = 300

Inventory balance, month 1 I0 +R1 +O1− I1 = 740
Inventory balance, month 2 I1 +R2 +O2− I2 = 800
Inventory balance, month 3 I2 +R3 +O3− I3 = 280
Inventory balance, month 4 I3 +R4 +O4− I4 = 470
Inventory balance, month 5 I4 +R5 +O5− I5 = 630
Inventory balance, month 6 I5 +R6 +O6− I6 = 510

Ending inventory I6 ≥ 200

all variables must be≥ 0
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An OFV of $225,470 was found. The values of the variables are:

t 1 2 3 4 5 6
Rt 600 600 290 600 600 600
Ot 0 40 0 0 0 0
It 160 0 10 140 110 200

Given that overtime is much more expensive than regular time, overtime is used
only when necessary. In the second month, 40 units are produced on overtime
in order to meet the balance of that month’s requirement. Month three’s demand
is relatively low, so under the assumptions of this model the production is cut
accordingly.

To this basic model we now consider separately two extensions. In one, the
demand can be ‘back-ordered’ at a certain cost. In the other, changes to the pro-
duction level from month to month have a cost associated with them.

3.3.3 Shortage Model
Companies cannot always deliver their products when they are demanded. When-
ever this happens, however, they risk losing the customer’s future business. There
may be other costs as well, for example the cost of expediting a shipment using a
courier service. In modelling the possibility of late deliveries, it is customary to
assign a high penalty cost for lateness. Suppose that Tools R Us gives its customers
a $25 per tool rebate for each month that the product is delivered late. They could
then take this figure as the cost of a late product and add this possibility to the
basic model. When late deliveries are permitted, it is possible for the inventory to
be negative, meaning that the customers’ requirements for that month have been
partially back-ordered.

It may appear that we have found a variable for which the non-negativity re-
striction does not apply. However, within the formulated model, we will not let the
inventory variable wander into the negative region, because this gains us nothing.
Instead, we will model the inventory level in each month using two variables, one
to represent inventory-on-hand, and the other to represent back-ordered inventory.
Each of these two variables must be non-negative, and the context requires that
in each month at least one of these two variables must be zero. The amount of
inventory-on-hand at the end of month t, where t = 0, . . . ,6, will be denoted as
I+t , and the amount of back-ordered inventory at the end of month t is denoted as
I−t . The net inventory level in month t, denoted as It , can be positive or negative.
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These three variables are related by the equation

It = I+t − I−t

In the objective function, each 2It is replaced by 2I+t , and we add ∑
6
t=1 25I−t . In

this model there is no need to force at least one of I+t or I−t to be zero – the
objective function as it stands will ensure that this logical requirement is met.

In each of the constraints, for the appropriate value of t, It is replaced by I+t −
I−t wherever it appears. Making these changes we obtain a model with twenty-six
variables and twenty constraints:

minimize
6

∑
t=1

(67Rt +95Ot +2I+t +25I−t )

subject to
Regular time production Rt ≤ 600 (t = 1, . . . ,6)

Overtime production Ot ≤ 150 (t = 1, . . . ,6)
Initial inventory I+0 − I−0 = 300

Inventory balance, month 1 I+0 − I−0 +R1 +O1− I+1 + I−1 = 740
Inventory balance, month 2 I+1 − I−1 +R2 +O2− I+2 + I−2 = 800
Inventory balance, month 3 I+2 − I−2 +R3 +O3− I+3 + I−3 = 280
Inventory balance, month 4 I+3 − I−3 +R4 +O4− I+4 + I−4 = 470
Inventory balance, month 5 I+4 − I−4 +R5 +O5− I+5 + I−5 = 630
Inventory balance, month 6 I+5 − I−5 +R6 +O6− I+6 + I−6 = 510

Ending inventory I+6 − I−6 ≥ 200

all variables must be ≥ 0

An OFV of $225,350 was found, a savings of $120 over the basic model. The
optimal values of the variables are:

t 1 2 3 4 5 6
Rt 600 600 330 600 600 600
Ot 0 0 0 0 0 0
I+t 160 0 10 140 110 200
I−t 0 40 0 0 0 0

The overtime in the previous model (40 units in month 2) has been transferred to
month 3’s regular time production, saving 40 times $95 in overtime charges, but
adding 40 times $67 in regular time charges plus 40 times $25 in rebate charges,
for a net savings of 40($95 − $67 − $25) = $120.
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3.3.4 Production Level Change Model
It is often the case that changes in the production level, either upward or down-
ward, incur costs. When the production level is increased, there may be costs in
hiring new workers, training these workers, and adjusting the production machin-
ery. When the production level is decreased, there may be a legal requirement
to give severance pay. We now present a model which considers changes to the
production level. To keep the model as simple as possible, shortages will not be
allowed.

In such a model we need to know the initial and final conditions for the pro-
duction level as well as these conditions for the inventory level. Suppose that the
data are as they were in the original model, but we now add the initial condition
that the production level for August is 570 units (all regular time), and we add the
final condition that the desired production level for February is between 250 and
500 units. The cost to increase the production level from one month to the next
is $17 per unit increased, and the cost to decrease the production level from one
month to the next is $38 per unit decreased.

In addition to the Rt , Ot , and It variables, we need variables to represent the
changes in the production level from one month to the next. We define:

Ut = the increase in the production level from month t−1 to month t, where
t = 1, . . . ,6.

Dt = the decrease in the production level from month t−1 to month t, where
t = 1, . . . ,6.

Adding these variables to the objective function we obtain:

minimize
6

∑
t=1

(67Rt +95Ot +2It +17Ut +38Dt)

To the constraints of the original model we add the following. First, there are
the initial and final conditions:

R0 = 570
O0 = 0

R6 +O6 ≥ 250
R6 +O6 ≤ 500

Secondly, there is a set of constraints which relate the production level change
variables to the production level variables. The increase or decrease in the pro-
duction level from August to September is given by:
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R1 +O1−R0−O0

This expression, be it positive or negative, must equal U1−D1. Hence

R1 +O1−R0−O0 =U1−D1

Therefore:

R1 +O1−R0−O0−U1 +D1 = 0

This is the production level change balance constraint for month 1. For the
other five months we have:

R2 +O2−R1−O1−U2 +D2 = 0
R3 +O3−R2−O2−U3 +D3 = 0
R4 +O4−R3−O3−U4 +D4 = 0
R5 +O5−R4−O4−U5 +D5 = 0
R6 +O6−R5−O5−U6 +D6 = 0

This production level change model has thirty-three variables and thirty con-
straints.
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minimize
6

∑
t=1

(67Rt +95Ot +2It +17Ut +38Dt)

subject to
Regular time production Rt ≤ 600 (t = 1, . . . ,6)

Overtime production Ot ≤ 150 (t = 1, . . . ,6)
Initial inventory I0 = 300

Inventory balance, month 1 I0 +R1 +O1− I1 = 740
Inventory balance, month 2 I1 +R2 +O2− I2 = 800
Inventory balance, month 3 I2 +R3 +O3− I3 = 280
Inventory balance, month 4 I3 +R4 +O4− I4 = 470
Inventory balance, month 5 I4 +R5 +O5− I5 = 630
Inventory balance, month 6 I5 +R6 +O6− I6 = 510

Ending inventory I6 ≥ 200
Initial regular time production R0 = 570

Initial overtime production O0 = 0
Min. total ending production R6 +O6 ≥ 250
Max. total ending production R6 +O6 ≤ 500

Production change balance, month 1 R1 +O1−R0−O0−U1 +D1 = 0
Production change balance, month 2 R2 +O2−R1−O1−U2 +D2 = 0
Production change balance, month 3 R3 +O3−R2−O2−U3 +D3 = 0
Production change balance, month 4 R4 +O4−R3−O3−U4 +D4 = 0
Production change balance, month 5 R5 +O5−R4−O4−U5 +D5 = 0
Production change balance, month 6 R6 +O6−R5−O5−U6 +D6 = 0

all variables must be ≥ 0

For clarity, the last six constraints have been shown in full, but we could sim-
plify this set of constraints to:

Production change balance, month t:
Rt +Ot−Rt−1−Ot−1−Ut +Dt = 0 (t = 1, . . . ,6)

An OFV of $231,940 was found. This is a higher cost than that of the ba-
sic model, since the changes added only new costs without any improvements in
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flexibility. The optimal values of the variables are:

t 1 2 3 4 5 6
Rt 600 600 530 530 530 500
Ot 20 20 0 0 0 0
It 180 0 250 310 210 200

Ut 50 0 0 0 0 0
Dt 0 0 90 0 0 30

At the outset, the production level is increased in order to meet the shipping re-
quirements of the first two months. Thereafter, the production level falls, first
from month 2 to month 3, and then from month 5 to month 6. The second decline
was required because of the constraint on total production in month 6. This type
of model smooths the production level, thereby reducing the need for layoffs and
re-hiring.

3.4 Cutting Stock Models
A common industrial problem is that of determining how to cut stock in order to
meet a customer’s specific requirements. This cutting stock problem could involve
such products as rolls of paper or aluminium foil; the examples considered here
are concerned with wooden dowels. The first example highlights the concepts,
while the second is a more challenging problem.

3.4.1 Example 1 – Description
A lumber yard stocks 1 cm diameter wooden dowels in a standard width of 1
metre. A customer comes into the yard seeking seven dowels of width 45 cm,
thirteen of width 37 cm, and eight dowels of width 24 cm. They wish to cut the
customer’s order so as to minimize the number of standard sized dowels used.

If they cut one 45 cm dowel from a one metre (100 cm) dowel, what should
they do with the 55 cm dowel which is left over? They could cut a second 45 cm
dowel, leaving 100−2(45) = 10 cm of waste. Another option would be to cut off
37 cm from the 55 cm, leaving 18 cm of waste. A third option would be to cut
two 24 cm dowels, leaving 7 cm of waste. Each of these is a pattern. Patterns 1,
2, and 3 cut, respectively: two 45’s; one 45 and one 37; and one 45 and two 24’s.

We can also examine what happens when no 45 is cut. We can divide 37
into 100 twice with a remainder, hence we could cut two 37’s, and with the other
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Pattern 45 cm 37 cm 24 cm Waste (cm)
1 2 0 0 10
2 1 1 0 18
3 1 0 2 7
4 0 2 1 2
5 0 1 2 15
6 0 0 4 4

Table 3.1: Example 1 – List of the Patterns.

100− 2(37) = 26 cm, cut one 24 cm dowel from it. Hence Pattern 4 cuts no 45,
two 37’s, and one 24. For Pattern 5 we could cut one 37 cm dowel, leaving 63 cm,
from which we could cut two 24’s, with 63−2(24) = 15 cm of waste. Finally, for
Pattern 6 if we cut no 45’s and no 37’s, we would be able to cut four 24’s from the
100 cm standard dowel, leaving 4 cm of waste. A list of all the patterns is shown
in Table 3.1.

Let X be the number of standard size dowels used, and let Pi represent the
number of patterns of type i cut, where i = 1, . . . ,6. The objective is simply to
minimize X . Since X will be the sum of the Pi’s, there will be a balance constraint:

−X +P1 +P2 +P3 +P4 +P5 +P6 = 0

or

−X +
6

∑
i=1

Pi = 0

Alternatively, we could omit X and the balance constraint, and simply mini-
mize P1 +P2 +P3 +P4 +P5 +P6. The number of standard dowels used is simply
the OFV.

There will be three other constraints to make sure that the customer’s order is
met. First, we require that there be at least seven dowels of width 45 cm. Pattern
1 makes two 45’s, and Patterns 2 and 3 make one each, hence we require that:

2P1 +P2 +P3 ≥ 7

Secondly, we need thirteen dowels of width 37 cm. These are produced by patterns
2, 4, and 5, with Pattern 4 producing two 37’s and the others one each. Hence we
require that:

P2 +2P4 +P5 ≥ 13
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Two 24’s are made by Pattern 3, one by Pattern 4, two by Pattern 5, and four by
Pattern 6. We need eight 24’s, so the constraint is:

2P3 +P4 +2P5 +4P6 ≥ 8

Finally, we note that we must produce an integer number of patterns.
From the list of the patterns in Table 3.1, it is easy to obtain the left-hand

side coefficients for the last three constraints, which come from the middle three
columns. For example, in the 45 cm column, the numbers are 2, 1, 1, 0, 0, 0
creating

2P1 +1P2 +1P3 +0P4 +0P5 +0P6 = 2P1 +P2 +P3

Another way of looking at this is that the numbers on the left-hand side of the 45
cm row in the Excel model will be 2, 1, 1, 0, 0, and 0.

The model is:

minimize X
subject to

Balance −X +
6

∑
i=1

Pi = 0

45 cm 2P1 +P2 +P3 ≥ 7
37 cm P2 +2P4 +P5 ≥ 13
24 cm 2P3 +P4 +2P5 +4P6 ≥ 8

all variables ≥ 0 and integer

An alternate model is:

minimize
6

∑
i=1

Pi

subject to
45 cm 2P1 +P2 +P3 ≥ 7
37 cm P2 +2P4 +P5 ≥ 13
24 cm 2P3 +P4 +2P5 +4P6 ≥ 8

all variables ≥ 0 and integer

Entering the latter model into Excel we obtain:
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1
2

3

4

5
6

7

8

9

10

A B C D E F G H I J

OFV Cutting Stock Model

0 P1 P2 P3 P4 P5 P6

Minimize 1 1 1 1 1 1

# of Patterns

Dowels RHS

45 cm 2 1 1 0 >= 7

37 cm   1 2 1 0 >= 13

24 cm     2 1 2 4 0 >= 8

In this example, just as in the constable staffing problem seen earlier, we could
have omitted the 1’s in row 4, and simply have entered =SUM(B3:I3) into cell
A3, but for consistency with the other Excel models we kept the 1’s and used
the SUMPRODUCT function. In addition to checking the box to declare non-
negativity, we use the Add Constraint dialog box, declaring the range B5:G5 to
be “int” (middle box).

1
2

3

4

5
6

7

8

9

10

A B C D E F G H I J

OFV Cutting Stock Model

11 P1 P2 P3 P4 P5 P6

Minimize 1 1 1 1 1 1

# of Patterns 3 1 0 5 2 0

Dowels RHS

45 cm 2 1 1 7 >= 7

37 cm   1 2 1 13 >= 13

24 cm     2 1 2 4 9 >= 8

The optimal solution is to use 11 standard size dowels to make three pattern
1’s, one pattern 2, five pattern 4’s, and two pattern 5’s.
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3.4.2 Example 2 (Optional)
Description and Formulation

A mill produces dowels in standard lengths of 80, 150, and 200 cm. All dowels
have a diameter of 1 cm. These lengths are then sold and shipped wholesale to
lumber yards. A retail customer needs ten 26 cm dowels, fourteen 73 cm dowels,
and twenty 118 cm dowels. The lumber yard wishes to cut what the customer
wants using standard length dowels. For example, two 73 cm dowels could be
cut from one 150 cm dowel, the other 4 cm being waste. We wish to formulate a
model which will show how to cut the custom-made dowels so that the amount of
wasted wood is minimized.

It is possible to directly minimize the amount of wasted wood, but it is easier
to do so indirectly. This is accomplished by seeing that since the total length of
dowel required by the customer is fixed (3642 cm), the amount of wasted wood
is minimized by minimizing the total length of standard dowels used. Hence we
define:

X1 = the number of 80 cm dowels used
X2 = the number of 150 cm dowels used
X3 = the number of 200 cm dowels used

The total length of standard sized dowels used is 80X1 + 150X2 + 200X3. Hence
the objective function is

minimize 80X1 +150X2 +200X3

What complicates this formulation is that it is not obvious how each standard sized
dowel should be used. For example, each 80 cm dowel could be used to cut one
73 cm dowel, with 7 cm of waste, or three 26 cm dowels, with 2 cm of waste.

As we saw from the previous example, these are patterns, but the difference is
that we must keep track of the standard-size dowels used to make these patterns. In
examples such as this, each pattern has a label of the form (i, j), where i represents
a standard-size dowel and j is a pattern cut from it. Let the two patterns cut
from the 80 cm dowels be patterns (1,1) and (1,2) respectively. In terms of the
customer’s requirements for 118, 73, and 26 cm dowels8 pattern (1,1) cuts [0,1,0]
and pattern (1,2) cuts [0,0,3]. Either or both of these patterns could appear in the
optimal solution. We will disregard any pattern which is trivially sub-optimal,

8It is easier to consider the custom-made dowels in descending order of length.



3.4. CUTTING STOCK MODELS 139

such as cutting two 26 cm dowels from one 80 cm dowel, resulting in 28 cm of
waste.9 Hence the patterns of interest are:

Patterns from an 80 cm Dowel
for 118, 73, and 26 cm Dowels
Label Pattern Cuts Waste
(1,1) [0,1,0] 7 cm
(1,2) [0,0,3] 2 cm

A 150 cm dowel can be used to cut one 118 cm dowel, leaving 32 cm from
which one 26 cm dowel can be cut. Hence pattern (2,1) cuts [1,0,1] with 6 cm
of waste. If no 118 cm dowels are cut, then we can cut up to two 73 cm dowels,
leaving 4 cm of waste; pattern (2,2) cuts [0,2,0]. Cutting no 118 cm dowel and
just one 73 cm dowel leaves 77 cm, from which two 26 cm dowels can be cut,
leaving 25 cm of waste. Obviously, the amount of waste from any pattern must be
less than the length of the shortest dowel (26 cm). Pattern (2,3) which cuts [0,1,2]
creating 25 cm of waste is not likely to be in the optimal solution, but since the
waste is less than 26 cm, it cannot be ruled out at this time. Finally, if no 118 or
73 cm dowels are cut then we have pattern (2,4) which cuts [0,0,5], with 20 cm of
waste. Hence the patterns of interest from a 150 cm dowel are:

Patterns from a 150 cm Dowel
for 118, 73, and 26 cm Dowels
Label Pattern Cuts Waste
(2,1) [1,0,1] 6 cm
(2,2) [0,2,0] 4 cm
(2,3) [0,1,2] 25 cm
(2,4) [0,0,5] 20 cm

Repeating this procedure for the 200 cm dowels the patterns are:

Patterns from a 200 cm Dowel
for 118, 73, and 26 cm Dowels
Label Pattern Cuts Waste
(3,1) [1,1,0] 9 cm
(3,2) [1,0,3] 4 cm
(3,3) [0,2,2] 2 cm
(3,4) [0,1,4] 23 cm
(3,5) [0,0,7] 18 cm

9We can think of this as [0,0,3] dominating [0,0,2].
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Now we need to add some more variables. We define

Pi j = the number of patterns of type (i, j) used

where i and j range as given above.
We need to balance the number of standard sized dowels of size i used with

the number of patterns of type (i, j) cut. This gives the following three equations:

P1,1 +P1,2−X1 = 0
P2,1 +P2,2 +P2,3 +P2,4−X2 = 0

P3,1 +P3,2 +P3,3 +P3,4 +P3,5−X3 = 0

We need at least twenty 118 cm dowels. This length is produced by three patterns,
each of which produces one 118 cm dowel. Hence

P2,1 +P3,1 +P3,2 ≥ 20

We must produce at least fourteen 73 cm dowels. There are six patterns which are
applicable; four which produce one 73 cm dowel and two which produce two 73
cm dowels.

P1,1 +2P2,2 +P2,3 +P3,1 +2P3,3 +P3,4 ≥ 14

Finally, we need at least ten 26 cm dowels. There are eight patterns which produce
one or more 26 cm dowels. Summing over all of these we obtain:

3P1,2 +P2,1 +2P2,3 +5P2,4 +3P3,2 +2P3,3 +4P3,4 +7P3,5 ≥ 10

This problem, like the telephone operator problem, requires that all variables
be ∈ {0,1,2,3, . . .}. The complete formulation is:

minimize 80X1 +150X2 +200X3
subject to

Balance, 80 cm standard dowels P1,1 +P1,2−X1 = 0
Balance, 150 cm standard dowels P2,1 +P2,2 +P2,3 +P2,4−X2 = 0
Balance, 200 cm standard dowels P3,1 +P3,2 +P3,3 +P3,4 +P3,5−X3 = 0

118 cm custom dowels P2,1 +P3,1 +P3,2 ≥ 20
73 cm custom dowels P1,1 +2P2,2 +P2,3 +P3,1 +2P3,3 +P3,4 ≥ 14
26 cm custom dowels 3P1,2 +P2,1 +2P2,3 +5P2,4+

3P3,2 +2P3,3 +4P3,4 +7P3,5 ≥ 10

all variables ∈ {0,1,2,3, . . .}
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We solve this on the Excel Solver, including a declaration that the range of
variable cells be “int” (integer). There are multiple optima; one optimal solution
is X2 = 4, X3 = 16, P2,1 = 4, P3,1 = 14, and P3,2 = 2, with all other variables being
0. The optimal OFV is 150×4+200×16 = 3800 cm. Since 3642 cm of dowel
is sent to the customer, this optimal plan creates 158 cm of waste.

It turns out that the above solution is naturally integer, meaning that if we had
omitted the int declaration we would have found an integer solution anyway. A
slight change can destroy this harmony. If, for example, the customer’s require-
ment for 26 cm dowels had been only 7 instead of 10, the solution is no longer
naturally integer. Since one does not know ahead of time if such a model will be
naturally integer, it makes sense to make the int declaration whenever the variables
must be integer.

An Alternate Model (Optional)

Knowing the waste created by each pattern, and the numbers of each pattern cut,
the total amount of waste is given by:

total waste = 7P1,1 +2P1,2 +6P2,1 +4P2,2 +25P2,3 +20P2,4+
9P3,1 +4P3,2 +2P3,3 +23P3,4 +18P3,5

This expression can form part of an objective function, but we must also penalize
any customer lengths which are made in excess of the customer’s order. To do
this we define S1, S2, and S3 as the number of dowels of length 118, 73, and
26 cm respectively made in excess of the customer’s requirements. Subtracting
these variables from the left-hand side turns the custom constraints into equalities.
These constraints are now

118 cm custom dowels P2,1 +P3,1 +P3,2−S1 = 20
73 cm custom dowels P1,1 +2P2,2 +P2,3 +P3,1 +2P3,3 +P3,4−S2 = 14
26 cm custom dowels 3P1,2 +P2,1 +2P2,3 +5P2,4+

3P3,2 +2P3,3 +4P3,4 +7P3,5−S3 = 10

The dowels which, if any, are produced in excess of those demanded, are penalized
by putting the terms

118S1 +73S2 +26S3

into the objective function. The first three constraints, the balance constraints
on the standard size dowels, are no longer required.10 The alternate model is
therefore:

10However, there would be no harm in leaving them in if had wanted to do so.
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minimize 7P1,1 +2P1,2 +6P2,1 +4P2,2 +25P2,3 +20P2,4+
9P3,1 +4P3,2 +2P3,3 +23P3,4 +18P3,5

+118S1 +73S2 +26S3
subject to

118 cm custom dowels P2,1 +P3,1 +P3,2−S1 = 20
73 cm custom dowels P1,1 +2P2,2 +P2,3 +P3,1 +2P3,3 +P3,4−S2 = 14
26 cm custom dowels 3P1,2 +P2,1 +2P2,3 +5P2,4+

3P3,2 +2P3,3 +4P3,4 +7P3,5−S3 = 10

all variables ∈ {0,1,2,3, . . .}

This model will have a different OFV∗; it will differ from the previous one by the
fixed length requirement of 3642 cm. All Xi’s and P∗i j values will be the same as
before. Note that each of the objective function coefficients here is a calculated
value, which can be a source of error. Therefore, the original objective function
written in terms of the Xi’s is the preferred form.

3.5 Some Special Situations
In this section we consider some situations which lead to potential problems in
their formulation.

Ratio Constraints

We have seen some of these already, but sometimes the wording might trick us.
Consider, for example, a company which makes tables and chairs, and in the prob-
lem description it is stated that “for every table made, they must make at least four
chairs”. If T and C represent respectively the number of tables and chairs made,
a common mistake is to write this as T ≥ 4C. This happens because the T , the 4,
and the C, all appear in this order in the sentence. However we know that if they
make 20 tables, then they must make at least 80 chairs. Hence it is T (rather than
C) which must be multiplied by 4, i.e. C ≥ 4T , which in standard form is:

Ratio −4T +C ≥ 0

A good idea in these situations is to make a numerical example, and then test the
constraint to see that things are working properly.
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Confusing a Coefficient with its Reciprocal

Suppose that a machine is used to make two models of circuit boards. Type 1
boards can be made at a rate of four per hour, and Type 2 boards can be made
at a rate of five per hour. The machine is available for ten hours per day. Let
X1 and X2 represent respectively the number of Type 1 and Type 2 circuit boards
made each day. A common mistake is to write the daily production constraint
as 4X1 + 5X2 ≤ 10. This comes from confusing “four per hour” with four hours
to make one board. Since we can make four per hour, it only takes one-quarter
of a hour to make one Type 1 circuit board. Hence the proper way to write this
constraint is:

Machine Availability
X1

4
+

X2

5
≤ 10

Writing the constraint this way preserves the original data of the problem. This
information is lost if we convert it to the decimal form 0.25X1+0.2X2≤ 10. While
some optimization software would require the decimal form, in Excel we can
simply leave the constraint as it is and enter the data into Excel as =1/4 and
=1/5. Certainly, if the denominators had been numbers like 7 and 11, it would
be best just to leave the constraint as it is.

Shared Time

Suppose that a crusher can crush Type 1 rock at a rate of 800 Tonnes per hour, but
the much harder Type 2 rock can be crushed at a rate of only 400 Tonnes per hour.
Let X1 and X2 represent respectively the number of Tonnes of Type 1 and Type 2
rock crushed each hour. A common mistake is to model this with two constraints
X1 ≤ 800 and X2 ≤ 400. While these must be true, they do not capture the sharing
of time on the crusher.

The way to handle this situation is to imagine one hour of the crusher’s time.
During this hour, some of the time could be crushing Type 1 rock, some could
be crushing Type 2 rock, and some could be idle. The fraction of the hour spent
crushing Type 1 rock is X1/800, and the fraction of the hour spent crushing Type
1 rock is X1/400. The sum of these fractions cannot exceed 1, hence:

Crusher
X1

800
+

X2

400
≤ 1

The difference between the right-hand side and the numerical value of the left-
hand side is the fraction of the hour in which the crusher is idle.
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Notice that the format of this constraint has much in common with the machine
availability constraint in the previous example. Similarly, it can be expressed
differently, such as 0.00125X1 + 0.0025X2 ≤ 1, or X1 + 2X2 ≤ 800, but the first
way preserves the original data of the problem.

Buying Extra Resources

Suppose that a farmer has 80,000 cubic metres of water available from collected
rainfall. A consultant has made an algebraic model for the farmer in which the
variables represent the number of hectares of land devoted to three types of crops.
Based on this, the consultant has come up with a water availability constraint of:

Water Availability 20X1 +90X2 +75X3 ≤ 80,000

Now suppose that things are as they were before, except that if desired the
farmer can buy up to an extra 60,000 cubic metres of water from an irrigation
system at a cost of five cents per cubic metre. This one sentence will require that
four things be done:

1. We need to define a variable for the amount in cubic metres of extra water
bought. Suppose that we name this variable W.

2. In a profit maximization problem, the water is a cost, so its coefficient will
be negative. The objective function in dollars will be as it was before, but
with a new term of −0.05W added to it.

3. The purchased water adds to the water already available, hence:

Water Availability 20X1 +90X2 +75X3 ≤ 80,000+W

In standard form this is:

Water Availability 20X1 +90X2 +75X3−W ≤ 80,000

4. Finally, we need an extra constraint:

Water Purchased W ≤ 60,000
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3.6 Summary
This chapter has illustrated examples from four applications of linear optimiza-
tion: blending, scheduling, production planning, and the cutting stock problem.
In all cases we needed to examine the unknowns of the situation, which are repre-
sented by decision variables. The objective gives us an idea of what some of these
variables are; others are more subtle and we may not discover them until we try to
write the constraints.

3.7 Problems for Student Completion
Formulate the following problems as linear optimization models. Where appropri-
ate, you may wish to number the commodities and then use subscripted variables.
In some cases no specific objective is named; it is up to the reader to come up with
an appropriate objective.

3.7.1 Blending Gasoline
A company blends two gasolines from Avalon Fuels and Bonavista Petrol (in-
puts) into two commercial products, Extra and Regular gasoline (outputs). For
the inputs, the octane ratings, the vapour pressures in kilopascals, and the amounts
available in cubic metres (m3) and their prices are known. These are:

Input Octane Vapour Amount Buying Price
Gasoline Rating Pressure (kPa) Available (m3) ($ per m3)
Avalon 99 38 55,000 520

Bonavista 82 55 80,000 440

For the Extra and Regular gasolines the requirements are:

Output Minimum Maximum Minimum Selling
Gasoline Octane Vapour Amount Price

Rating Pressure (kPa) Required (m3) ($ per m3)
Extra 94 40 36,000 540

Regular 86 52 70,000 470

(a) Make an algebraic model for this problem, where the variables are defined
as follows: E and R are respectively the amount of Extra/Regular gasoline



146 CHAPTER 3. APPLICATIONS OF LINEAR MODELS

in m3 blended and sold; A and B are respectively the amount of gasoline in
m3 purchased from Avalon Fuels/Bonavista Petrol; AE, AR, BE, and BR are
respectively the amounts in m3 of Avalon/Bonavista gasoline used to make
Extra/Regular gasoline.

(b) Make a spreadsheet model, and solve it using the Excel Solver.

(c) State the recommendation clearly.

3.7.2 Blending Oil
An oil refinery has three types of inputs, with the following prices and character-
istics:

Input Price % Sulphur Thermal Value
# per litre (by mass) (kilojoules/litre)
1 $0.42 2.2 15,000
2 $0.76 0.4 20,000
3 $0.60 1.0 17,000

The inputs are blended to produce two outputs, with the following outputs and
promised specifications:

Output Price Maximum % Minimum Thermal Value
# per litre Sulphur (by mass) (kilojoules/litre)
1 $0.63 1.2 16,000
2 $0.91 0.7 18,000

The refinery has a capacity of 1,000,000 litres/day overall. Subject to the overall
capacity, up to 500,000 litres/day of any input, or 650,000 litres/day of any output
can be handled.

We can assume that all three inputs have identical densities, thereby enabling
the sulphur percentages to be treated as if they were by volume. We can also
assume that there are no losses in the blending process, and that the characteristics
of the outputs are a weighted average (by volume) of the characteristics of the
inputs.

3.7.3 Scheduling of Restaurant Workers
A large unionized restaurant is planning its workforce schedule. The requirements
for employees over the seven day work week are:
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Minimum Number
Day of Employees
Sunday 110
Monday 81
Tuesday 85
Wednesday 118
Thursday 124
Friday 112
Saturday 120

The collective bargaining agreement states that all employees are to work five
consecutive days per week with two consecutive days off (Saturday and Sunday
are consecutive). Such a schedule might mean that some employees show up for
work (for which they are paid) but they are not required (for example, the schedule
might assign 119 employees on Wednesday). The restaurant manager wishes to
minimize such wastage.

3.7.4 An Irrigation Problem

A farmer owns 500 hectares of land in an arid region. The state government gives
him up to 1,000,000 cubic metres of water for irrigation each year. In addition, he
may purchase up to an additional 300,000 cubic metres of water per annum at a
cost of $0.04 per cubic metre.

He grows corn, peas, and onions. The net revenue per hectare of each com-
modity (excluding the cost of purchased water, if any) and the water requirement
in cubic metres per hectare are:

Commodity Revenue Water Requirement
per Hectare (cubic metres per hectare)

Corn $200 3500
Peas $400 6700
Onions $300 2000

He wishes to diversify his crop in case one commodity suffers an unanticipated fall
in price. Therefore, no commodity may occupy more than 50% of the total area
planted, nor may any commodity occupy less than 10% of the total area planted.
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3.7.5 Blending of Coffee
Columbian, Peruvian, and Nigerian coffee beans can be purchased for $1.20,
$1.00, and $0.90 per kilogram respectively. From these sources a company makes
a “regular” and a “premium” blend of coffee, which sell for $1.30 and $1.60
per kilogram respectively. The regular blend contains at least 10% (by mass)
Columbian beans, and at least 20% Peruvian beans. The premium blend contains
at least 50% Columbian beans, and no more than 15% Nigerian beans. The max-
imum market demand is for 200,000 kilograms of regular coffee and for 130,000
kilograms of premium coffee.

3.7.6 Scheduling of Bus Drivers
City bus drivers work two three and a half-hour shifts per day. In some cases,
the two shifts are consecutive (effectively one seven-hour shift), but usually they
are not. Because of the inconvenience of breaking up the day, those who work
non-consecutive shifts are paid a $15 per day bonus. All bus drivers earn a base
rate of $25 per hour. The bus company has the following daily requirements:

Minimum Number
Time of Day of Drivers Needed
5:30 a.m. to 8:59 a.m. 150
9:00 a.m. to 12:29 p.m. 80
12:30 p.m. to 3:59 p.m. 90
4:00 p.m. to 7:29 p.m. 160
7:30 p.m. to 10:59 p.m. 70

Subject to meeting all its requirements for drivers, the bus company wishes to
minimize its daily labour cost (regular and bonus).

3.7.7 Production Planning 1
A manufacturer of school buses has firm orders for the next four quarters:

Quarter 1 2 3 4
Demand 350 400 290 380

It is now the end of the year. Based on what has already been planned for this
quarter, the inventory of school buses as of December 31 will be 120 units. Up to
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360 buses can be manufactured each quarter based on each employee working on
regular time. Each bus costs $40,000 if manufactured on regular time. It is also
possible to manufacture up to 80 buses on overtime. Each bus so produced costs
$55,000.

To keep one bus in inventory for one quarter costs $2,000. This charge repre-
sents the cost of tied-up capital, warehouse, and insurance expenses. As a buffer
against potentially high demand at the end of the planning horizon, the ending
inventory should be at least 70 buses.

Buses may be delivered late to the customers, but this comes with a penalty
cost of $13,000 per quarter per bus. We wish to formulate a model which seeks to
minimize the sum of all costs.

3.7.8 Production Planning 2
A company which produces a single product has definite orders for this product
over the next four quarters as follows:

Quarter 1 2 3 4
Demand 350 680 275 590

The company ended the previous year with an inventory of 200 units, and the final
quarter production level was 400 units. The company wishes to end this year with
an inventory of at least 250 units.

It costs $3.50 per unit to increase the production level from one quarter to
the next, and $6.00 per unit to decrease it. The cost of holding inventory from
one quarter to the next is $4.80 per unit per quarter. No shortages are permitted.
The company wishes to minimize the sum of production level change costs and
inventory costs over the four quarter planning horizon.

3.7.9 Production Planning 3
A company has firm orders for the following quantities over the next six months:

Month 1 2 3 4 5 6
Demand 200 300 700 500 100 400

To change the production level from one month to the next costs $2 per unit in-
creased or $5 per unit decreased. To hold a unit in inventory for one month costs
$4. No shortages are permitted.
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The company starts off (think of this as month 0) with 50 units in inventory.
There must be no inventory left over at the end of month six. The previous month’s
(month 0) production level was 240 units. There is no restriction on the level of
production in month six. The company wishes to minimize the sum of production
level change costs and inventory holding costs over the six month horizon.

3.7.10 Cutting Stock 1

A lumber yard stocks 1 cm diameter dowels in a standard width of 200 cm. A
customer wishes to buy 38 dowels of width 120 cm, 32 dowels of width 45 cm,
and sixteen dowels of width 40 cm.

(a) Make a model for this situation.

(b) Find the solution using the Excel Solver.

3.7.11 Cutting Stock 2

A paper mill produces rolls of paper in a standard width of 150 cm. All paper
produced has a thickness of 0.08mm, and each roll has a length of 1000 metres.
The customers all desire rolls of this thickness and this length. The mill currently
has the following non-standard width orders:

Width (cm) Number
87 51
61 65
45 18

(a) Formulate a model for this problem.

(b) Solve the model using the Excel Solver.

3.8 More Difficult Problems

As these problems might be used for hand-in assignments, solutions are not pro-
vided.



3.8. MORE DIFFICULT PROBLEMS 151

3.8.1 Cutting Stock
A paper mill produces rolls of paper in standard widths of 90 cm and 200 cm.
All paper produced has a thickness of 0.1 mm, and each roll has a length of 1000
metres. The customers all desire rolls of this thickness and this length, but not
necessarily either of the two standard widths. The mill currently has the following
non-standard width orders:

Width (cm) Number
95 25
80 31
46 23
21 68

The paper which is leftover on the cut rolls is re-cycled. Formulate a model
which will minimize the amount of paper which needs to be re-cycled.

3.8.2 Production Planning
The production manager of a company needs to determine next month’s produc-
tion plan for the company’s ten products. The products use six resources: assem-
bly line 1; assembly line 2; painting; dryers; packaging; and storage. Storage is
measured in m3, and the others are in hours. The requirements for each product
are:

Product Resource
1 2 3 4 5 6 7 8 9 10 Available

Assembly 1 2 1 0.5 0.75 1.5 0.25 0 0 0 0 2100
Assembly 2 0 0 0.3 0.45 0.5 0.65 1 0.8 2 3 1500
Painting 0 0.2 0 0.4 0.5 0.65 1.5 0.1 0.15 2 1000
Dryers 0 0.3 0 0.8 0.2 0 1 0.3 0.2 1 1000
Packaging 0.5 0.1 1 0.2 0.1 0.65 0.1 0.2 1 0.5 1600
Storage 0.25 0.1 0.5 0.45 0.4 0.25 0.1 0.1 2 0.3 1300

In addition, there are some company constraints which must be satisfied.

(i) There should be at most 4,500 units produced.

(ii) There should be at least two units of product 3 for every unit of the combined
production of products 6 and 8 produced.
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(iii) The total production of product 4 should be no more than the combined
production of products 2 and 7.

(iv) The combined production of products 1 and 5 must be at most twice the
production of product 9.

The profit contribution in dollars per unit for each of the ten products is 2.1,
3.2, 1.6, 4.8, 1.2, 4.3, 3.5, 1.8, 5.5, 3.9 respectively.

For both parts (a) and (b), state the solution so that the production manager
will understand it.

(a) Given that the company wants to maximize its profit, define the variables and
set up the appropriate algebraic model in standard linear optimization format.

(b) Convert the algebraic model from (a) to a spreadsheet model, and solve it
using a spreadsheet solver.

(c) Now suppose that the cost of storage ($2.50 per m3) has not been taken into
account in the profits given for each product, but we now wish to include
it. Modify the models from (a) and (b) (just show what’s different compared
with (a)), with the amount of storage used becoming the eleventh variable,
and solve the modified model using a spreadsheet.



Chapter 4

Sensitivity Analysis

4.1 Introduction
After a model has been solved, it is often desirable to know what would happen
if one or more of the parameters of the model were to change. When we do this
we say that we are performing a sensitivity analysis on the model. One can al-
ways answer such a question by re-solving the model with the altered parameters.
Sometimes, however, such questions can be answered simply by using some of the
information which was determined from solving the initial model. We wish to be
able to identify such situations so that unnecessary re-solving on the Excel Solver
is avoided. Ideally, the user would have an Excel Solver printout of the solution to
the initial model, and would then use this information to answer a set of questions.
Only if a question could not be answered by using the sensitivity analysis methods
of this chapter, would we then run the model again with alterations.

There are three types of sensitivity analysis that we will perform:

1. Changes to the objective function coefficients.

2. Changes to the right-hand side values of the non-binding constraints.

3. Changes to the right-hand side values of the binding constraints.

In this chapter we will consider sensitivity analysis in three contexts. First,
for models which have only two decision variables, we will perform a sensitivity
analysis graphically. Secondly, we will see sensitivity analysis using an Excel
Solver Sensitivity Report for one-at-a-time changes. Finally, we will describe the
situations in which the effect of varying two or more coefficients simultaneously
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can be determined analytically based on the Sensitivity Report. In all situations,
sensitivity analysis is not compatible with declaring any of the variables to be
integer; for all variables, we must be willing to accept fractional values.

4.2 Graphical Approach to Sensitivity Analysis

4.2.1 Problem Description

Wood Products Limited buys fine hardwoods from around the world from which
they make specialized products for the quality furniture market. Two of their
products are two types of spindles.

A type 1 spindle requires 6 cuts, then 4 minutes of polishing, followed by
6.5 minutes of varnishing. A type 2 spindle requires 15 cuts, then 4 minutes of
polishing, followed by 4.75 minutes of painting. There is one cutting machine
which can operate up to 135 cuts per hour. There is one polishing machine –
allowing for maintenance it can operate up to 54 minutes per hour. Both the
varnish and paint shops can only handle one spindle at a time. Because of a
periodic need for high volume ventilation, the varnish and paint shops cannot
be operated continuously. These shops are available for production 58.5 and 57
minutes per hour, respectively.

For each type 1 spindle produced, the company obtains a contribution to profit
of $3. For each type 2 spindle produced, the contribution to profit is $4. How
many spindles of each type should be produced each hour so that the total contri-
bution to profit is maximized?

4.2.2 Model

We define:
X1 — the number of type 1 spindles produced per hour
X2 — the number of type 2 spindles produced per hour.
As always, each constraint is identified by a word description on the left-hand

side. In addition to this, the constraints have been numbered on the right-hand
side, to make it easier to reference these constraints in the text which follows
later.
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maximize 3X1 + 4X2
subject to

Cutting 6X1 + 15X2 ≤ 135 (1)
Polishing 4X1 + 4X2 ≤ 54 (2)

Varnishing 6.5X1 ≤ 58.5 (3)
Painting 4.75X2 ≤ 57 (4)

X1 , X2 ≥ 0

4.2.3 Graphical Solution
Because of the two 4’s in the polishing constraint, this constraint will be on a
diagonal. Since it’s ≤, the arrow will point south-west. So, since 54/4 = 13.5,
having a 14 by 14 grid must contain the optimal solution. Using these boundaries,
we obtain:

First Point Second Point
Cutting 6X1 + 15X2 ≤ 135 (1) (0,9) (14,3.4)

Polishing 4X1 + 4X2 ≤ 54 (2) (0,13.5) (13.5,0)
Varnishing 6.5X1 ≤ 58.5 (3) X1 = 9 vertical

Painting 4.75X2 ≤ 57 (4) X2 = 12 horizontal

The graph (displaying both numerical labels and the names of the constraints)
is shown in Figure 4.1.

We see that constraints (1) and (2), i.e. the cutting and polishing constraints,
are binding.

Using Algebra

The equations we need to solve are:

6X1 +15X2 = 135
4X1 +4X2 = 54

Multiplying the second equation by 6/4 = 1.5 we obtain:

6X1 +15X2 = 135
6X1 +6X2 = 81
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Figure 4.1: Spindle Problem – Original Version
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Subtracting the bottom from the top gives 9X2 = 54, and hence X2 = 6. Therefore
4X1+4(6) = 54, hence 4X1 = 30, and therefore X1 = 7.5. The 7.5 Type 1 spindles
per hour simply means that we must produce 15 of them every two hours, hence
the fractional solution is not of concern.

Using Matrix Operations in Excel (Optional)

Alternatively, we could solve the equations using Excel. Beginning with

Cutting 6X1 + 15X2 = 135
Polishing 4X1 + 4X2 = 54

we convert these equations to matrix form:[
6 15
4 4

][
X1
X2

]
=

[
135
54

]
Using the Excel MINVERSE function to perform the matrix inversion we obtain:[

6 15
4 4

]−1

=

[
−0.111111 0.111111

0.416667 −0.166667

]
Using MMULT to multiply the inverse by the right-hand side values, we obtain:[

X1
X2

]
=

[
7.5
6.0

]
The unique solution is X1 = 7.5, and X2 = 6.

The OFV

The objective function value at the point of optimality is

OFV∗ = 3X∗1 +4X∗2
= 3(7.5)+4(6)
= 22.5+24
= 46.5
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4.2.4 Changes to the Objective Function Coefficients
We now repeat the original solution, but consider also a new objective function
in which we keep the coefficient of X1 at its current value of 3, but increase the
coefficient of X2 from 4 to 5. The new objective function is:

maximize 3X1 +5X2

All the constraints are as they were before, but the dashed lines which show the
trial and optimal isovalue lines are modified to obtain the graph shown in Fig-
ure 4.2.

The slope of this line is negative, and indeed any two-variable constraint for
which both coefficients are positive (which is what happens most of the time)
will have a negative slope. Since its easier to deal with positive numbers, for
constraints of negative slope we define the steepness as the rise over the negative
of the run. In terms of the objective function coefficients, where c1≥ 0 and c2 > 0,
the steepness is conveniently found as:

steepness =
c1

c2

We see that this small change to the objective function makes the isovalue
line less steep. The steepness of the isovalue line was originally 3/4 = 0.75; it
is now 3/5 = 0.6. In this example, this reduction in steepness does not change
the optimal solution as far as the two decision variables are concerned, because
the solution remains at the same corner of the feasible region, where X1 = 7.5 and
X2 = 6. Of course, the OFV will increase by $6.00, because we obtain an extra
$1.00 per unit for the 6 units we make of X2, i.e. the OFV increases from $46.50 to
$52.50. Or, we can compute this new value as 3X1+5X2 = 3×7.5+5×6 = 52.5.

As the coefficient of X2 is increased, the optimal solution stays at the same
corner until the critical value of 7.5 is reached, at which point multiple optima
exist. Were we to attempt an even larger increase in the coefficient of X2, for ex-
ample a change to “maximize 3X1+8X2,” then the optimal corner would change,
in this case to the point X1 = 0, and X2 = 9.

If we were to decrease the coefficient of X2, then the isovalue line would be
steeper than the original one. As this coefficient is decreased the solution stays
at the same corner until the critical value of 3 is reached, at which point multiple
optima exist. With a further decrease, say to “maximize 3X1 +2X2,” the optimal
corner would change to X1 = 9, X2 = 4.5. For each cost coefficient, we wish to
determine the critical values between which the optimal solution does not change.
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Figure 4.2: Spindle Problem – New Objective: maximize 3X1 +5X2.
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The important thing in determining whether the current corner remains opti-
mal or whether a new optimal corner is obtained, is the relationship between the
steepness of the objective function and the steepness of each binding constraint.
We consider a general objective function for this problem:

max c1X1 + c2X2

We are seeking values for c1 and c2 which make the isovalue lines have a steepness
which is in-between the steepnesses of the two binding constraints, i.e. steeper
than the boundary of constraint (1), but not as steep as the boundary of constraint
(2). In the discussion which follows, we assume that both coefficients are strictly
positive (which makes sense because the company is selling these products in the
marketplace).

Since constraint (1) is 6X1+15X2≤ 135, the objective function will be steeper
than the boundary of (1) provided that 1

c1

c2
≥ 6

15
= 0.4

Since constraint (2) is 4X1+4X2 ≤ 54, the isovalue line will not be as steep as
the boundary of (2) provided that

c1

c2
≤ 4

4
= 1

Overall, therefore, the solution remains at the corner where the current two bind-
ing constraints (i.e. (1) and (2)) meet provided that c1,c2 > 0 and

0.4≤ c1

c2
≤ 1

At the current value of c2 = 4, we obtain the range

0.4≤ c1

4
≤ 1

1Or, we could write:
c2

c1
≤ 15

6
= 2.5

In this example, either of these forms is acceptable, but in general the one in the text above should
be used if, at the corner under consideration, the isovalue line could be horizontal, and the form
in this footnote should be used if the isovalue line could be vertical. Doing this will prevent a
division by 0 problem.
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which simplifies to
1.6≤ c1 ≤ 4

At the current value of c1 = 3, we obtain the range

0.4≤ 3
c2
≤ 1

Because c2 > 0 by assumption, when we cross-multiply by c2 the inequalities
remain unchanged. We therefore obtain 0.4c2 ≤ 3, and 3 ≤ c2, which simplifies
to

3≤ c2 ≤ 7.5

In the next section we will see that the Excel Solver computes the ranges for
each coefficient assuming that the other coefficient is held constant, just as we
just did here. Most software for linear optimization, including the Excel Solver,
will speak of the “allowable increase” (AI) or “allowable decrease” (AD) from the
current values of the coefficients. Hence with c1 = 3 and 1.6 ≤ c1 ≤ 4, the AI is
4−3 = 1 and the AD is 3−1.6 = 1.4. With c2 = 4 and 3 ≤ c2 ≤ 7.5, we obtain
AI = 3.5 and AD = 1.

The general form 0.4 ≤ c1
c2
≤ 1 is far more useful than what we obtain from

the Excel Solver because it allows us to consider two simultaneous changes to the
objective function coefficients. We now graph the region for c1 and c2 where the
particular corner defined by the interception of (1) and (2) remains optimal. This
graph is shown in Figure 4.3.

This region is bounded by c1− c2 ≤ 0 and c1−0.4c2 ≥ 0 (which follow from
0.4 ≤ c1

c2
≤ 1). Within this region, a horizontal line labelled A–B gives the range

for c1 if c2 is held constant, and a vertical line labelled C–D gives the range for
c2 if c1 is held constant. The A–B line gives the range 1.6 to 4, and the C–D line
gives the range 3 to 7.5, as we saw above.

4.2.5 Changes to the Right-Hand Side Values of the Non-Binding
Constraints

The easiest type of sensitivity analysis is that of a change to the right-hand side
(rhs) of a non-binding constraint. Whenever the rhs of any constraint (binding
or non-binding) is changed, the new boundary is parallel with the old one. An
increase to the rhs moves the boundary farther from the origin, while a decrease
moves it closer.
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In this example, both constraints (3) and (4) are non-binding. Suppose now
that we have the original objective function but that the right hand side of con-
straint (3) is changed. Whenever the rhs is increased, the new boundary moves
farther away from the optimal solution, and so there is no effect on the optimal
corner. We will have the same values for the variables and the objective function
value. Mathematically, the right-hand side value can be increased indefinitely,
but of course it makes no sense for this number to be more than 60, because it
represents the number of operating minutes per hour.

If the rhs is decreased, then there is no effect provided that the new boundary
does not “chop off” the current corner. For this to happen, the decrease must
not exceed the slack on the constraint. The left-hand side value of constraint (3)
is 6.5(7.5) + 0(6) = 48.75, and the right-hand side is 58.5, hence the slack is
58.5−48.75 = 9.75. Hence if the decrease is less than or equal to 9.75 units, we
would have the same values for X∗1 , X∗2 , and OFV∗. If the right hand side value
were to decrease by exactly 9.75 units, then the current corner remains optimal
but it would now have three lines passing through it. Such a corner is said to be
degenerate.

If the decrease is more than 9.75 units, i.e. if the new right hand side of (3) is
less than 58.5−9.75 = 48.75, then (3) would become a binding constraint and (2)
would become non-binding. Hence the current solution remains optimal provided
that the rhs of (3) is not decreased by more than 9.75 units.

At the optimal solution, the value of the left-hand side of the painting con-
straint (4) is 0(7.5)+ 4.75(6) = 28.5. The slack is therefore 57− 28.5 = 28.5.
Therefore, constraint (4) can be decreased by up to 28.5 units without affecting
the optimal solution. In general, the rhs of a non-binding ≤ constraint may be
decreased by up to the amount of the slack without affecting the optimal solution;
the rhs of such a constraint may be increased indefinitely.2

4.2.6 Changes to the Right-Hand Side Values of the Binding
Constraints

If the rhs of a binding constraint is changed, then the optimal solution will change.3

However, we shall see that within an “allowable range” (to be determined), the
2This is a statement of what is mathematically allowable; it has nothing to do with whether or

not it is technologically possible to alter the constraint.
3There’s one minor exception. If the current optimal solution is degenerate, then the rhs of

the “middle” of the three constraints can be increased (for ≤) or be decreased (for ≥) without
changing the solution.
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values of the variables and the OFV will vary linearly with changes to the rhs.

Determining the Allowable Range for the Polishing Constraint

To illustrate how we determine the allowable range, we consider an altered pol-
ishing constraint. We will denote this altered constraint as (2′):

Polishing 4X1 +4X2 ≤ 48 (2′)

We now re-solve the model. The first change is that the new polishing constraint is
parallel with the old one, but closer to the origin. This causes the feasible region
to be smaller than it was before. The part of the former feasible region which
is now infeasible is shown in blue. The optimal solution moves from its former
location along the cutting constraint (as shown by the arrows) until it reaches the
new interception point of the cutting and polishing constraints ( (1) and (2′) ). The
new solution is shown in Figure 4.4.

We have the same corner as before, but the corner itself has moved. We deter-
mine this new solution by solving the set of equations:

6X1 +15X2 = 135
4X1 +4X2 = 48

We solve these equations either by algebra or by using Excel to obtain X∗1 = 5,
and X∗2 = 7. If done on Excel, and if we already found the inverse matrix using
MINVERSE as shown on page 157, all we need do is use MMULT to multiply
the already-found inverse by the new right-hand side. We then compute OFV∗ =
3×5+4×7 = 43.

When we say that “we have the same corner as before,” we are saying that we
have the same pair of binding constraints. Whether the rhs of the second constraint
is the original value of 54 or the new value of 48, the binding constraints are
cutting and polishing. If we were to keep decreasing the rhs, we would eventually
reach the point where the cutting constraint meets the vertical axis. At this point
we would have a degenerate optimal solution, since three lines in two-dimensional
space consisting of constraints (1), (2′), and the non-negativity restriction X1 ≥ 0
(i.e. the vertical axis) all pass through the optimal solution. Either by inspection
or by solving 6X1+15X2 = 135 at X1 = 0, we obtain X2 = 9. Putting these values
into the objective function we obtain OFV= 3(0)+4(9) = 36. Hence this solution
is X∗1 = 0, X∗2 = 9, OFV∗ = 36.
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We now substitute these values into the left-hand side of the polishing con-
straint, to obtain 4(0)+ 4(9) = 36. 4 Hence 36 is the lowest value for the rhs of
the polishing constraint which makes the cutting and polishing constraints remain
binding.

A further decrease in the rhs of constraint (2) would cause constraint (1) to
become non-binding. The binding constraints would then consist of the modified
(2) and the vertical axis, and would remain as such for any positive value of the
rhs of constraint (2). If the rhs were to fall to 0, then only the origin would be
feasible (and hence optimal). If the rhs were to fall below zero, then this model
would no longer have a feasible solution.

If we were to increase the rhs of constraint (2) from its current value of 54,
then the constraints (1) and (2) would remain binding until the modified constraint
(2) intercepts the interception point of constraints (1) and (3), thereby creating a
point of degeneracy. Constraints (1) and (3) intercept where:

6X1 +15X2 = 135
6.5X1 = 58.5

From the second equation we obtain X1 = 9, and hence the first equation becomes

6(9)+15X2 = 135

and solving we obtain X2 = 5.4. Hence the critical value for the rhs of constraint
(2) which results in degeneracy at this corner is

4X1 +4X2 = 4×9+4×5.4 = 57.6

For an increase in the rhs of (2) beyond 57.6, constraint (2) would become redun-
dant, and the optimal solution would remain at X1 = 9, X2 = 5.4.

Hence, the range for the rhs of constraint (2) (denoted as b2) for which the
current binding constraints continue as such is

36≤ b2 ≤ 57.6

Alternatively, one can say that compared with the current value of b2 = 54, the
rhs has an “allowable increase” of 3.6 and an “allowable decrease” of 18. In this
context, the word allowable means the maximum change for which the binding
constraints remain unchanged; it has nothing to do with permission to alter a con-
straint.

4It is of course just a coincidence that the numerical value for the rhs of constraint (2) and the
OFV are the same. In any case, the units are different.



4.2. GRAPHICAL APPROACH TO SENSITIVITY ANALYSIS 167

The Values of the Variables

Let ∆b2 be the change (positive or negative) to the rhs value of constraint (2), i.e.
the new rhs value is 54+∆b2. The equations from the binding constraints are
now:

6X1 +15X2 = 135
4X1 +4X2 = 54+∆b2

Multiplying the second constraint by 6/4 = 1.5 we obtain:

6X1 +15X2 = 135
6X1 +6X2 = 81+1.5∆b2

Subtracting the bottom from the top gives:

9X2 = 54−1.5∆b2

and therefore

X2 = 6− ∆b2

6
Substituting this expression into the first equation gives:

6X1 +15X2 = 135
6X1 +15

(
6− 1

6∆b2
)

= 135
6X1 +90−2.5∆b2 = 135

6X1 = 45+2.5∆b2
X1 = 7.5+ 5

12∆b2

Alternatively, we could have substituted the expression into the second equation,
but this would have to include the ∆b2 on the right-hand side.

4X1 +4X2 = 54+∆b2
4X1 +4

(
6− 1

6∆b2
)

= 54+∆b2
4X1 +24− 4

6∆b2 = 54+∆b2
4X1 = 30+ 5

3∆b2
X1 = 7.5+ 5

12∆b2

Note that the Excel approach of using MINVERSE and MMULT does not help
us here. This is because Excel gives a numerical solution, but what we need here
is an analytical expression.
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The OFV and the Shadow Price

We substitute the expressions for X1 and X2 into the equation for the OFV:

OFV = 3X1 +4X2

= 3(7.5+ 5
12∆b2)+4(6− 1

6∆b2)

= 22.5+ 15
12∆b2 +24− 4

6∆b2

= 46.5+ 7
12∆b2

For each increase/decrease of one unit in the rhs of (2), the objective will in-
crease/decrease by 7

12 = 0.583333... or about 58.3 cents, provided that we remain
within the allowable range. This rate of change of the OFV per unit change in the
rhs is called the shadow price. 5

The shadow price can also be found numerically, by computing the OFV at
the lower or upper limit of the allowable range and then comparing this with its
original value. At the allowable decrease of 18, the altered (2) intercepts (1) and
the vertical axis, and the solution is X1 = 0, X2 = 9, and OFV = 3(0)+4(9) = 36.
Hence as the rhs falls by 18, the OFV falls by 46.5−36 = 10.5. The shadow price
is therefore −10.5/− 18 = 0.583333.... Or, we can use the upper limit. At the
allowable increase of 3.6, the altered (2) intercepts (1) and (3), and the solution is
X1 = 9, X2 = 5.4, and OFV = 3(9)+ 4(5.4) = 48.6. Hence the shadow price is
(48.6−46.5)/3.6 = 0.583333....

Determining the Allowable Range for the Cutting Constraint

We now perform a similar analysis for changes to the right hand side of the cutting
constraint (constraint (1)), denoted as b1. For a decrease, we see that constraints
(1) and (2) remain binding until (and including) the point where the boundaries of
constraints (1) (modified), (2), and (3) intercept. Constraints (2) and (3) intercept
at X1 = 9, X2 = 4.5. Hence the critical lower value for b1 is

6X1 +15X2 = 6×9+15×4.5 = 121.5

For an increase to b1, we see that constraints (1) and (2) remain binding until
and including the point where the boundaries of constraints (1) (modified), (2),

5The term dual price, which is used by LINGO (Appendix A) and other software for linear op-
timization, is a related but different concept. The dual price gives the improvement to the OFV per
unit change to the rhs. Hence the shadow price and the dual price are the same for maximization
problems, and are equal in magnitude but opposite in sign for minimization problems.
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and (4) intercept. Constraints (2) and (4) intercept at X1 = 1.5, X2 = 12. Hence
the critical upper value for b1 is

6X1 +15X2 = 6×1.5+15×12 = 189

Overall, therefore, the binding constraints remain unchanged provided that

121.5≤ b1 ≤ 189

Equivalently, compared with the current value of b1 = 135, there is an allowable
decrease of 13.5, and an allowable increase of 54.

The Values of the Variables

Let ∆b1 be the change (positive or negative) to the rhs value of constraint (1), i.e.
the new rhs value is 135+∆b1. The equations from the binding constraints are
now:

6X1 +15X2 = 135+∆b1
4X1 +4X2 = 54

Multiplying the second constraint by 6/4 = 1.5 we obtain:

6X1 +15X2 = 135+∆b1
6X1 +6X2 = 81

Subtracting the bottom from the top gives:

9X2 = 54+∆b1

and therefore

X2 = 6+
∆b1

9
Substituting this expression into the first equation gives:

6X1 +15X2 = 135+∆b1
6X1 +15

(
6+ 1

9∆b1
)

= 135+∆b1
6X1 +90+ 15

9 ∆b1 = 135+∆b1
6X1 = 45− 6

9∆b1
X1 = 7.5− 1

9∆b1
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Alternatively, we could use the second equation, which does not have a ∆b1 term
on the right-hand side:

4X1 +4X2 = 54
4X1 +4

(
6+ 1

9∆b1
)

= 54
4X1 +24+ 4

9∆b1 = 54
4X1 = 30− 4

9∆b1
X1 = 7.5− 1

9∆b1

The OFV and the Shadow Price

We substitute the expressions for X1 and X2 into the equation for the OFV:

OFV = 3X1 +4X2

= 3(7.5− 1
9∆b1)+4(6+ 1

9∆b1)

= 22.5− 3
9∆b1 +24+ 4

9∆b1

= 46.5+ 1
9∆b1

The shadow price within the allowable range is therefore 1
9 = 0.11111... or about

11.1 cents. As before, the shadow price can also be found numerically, by comput-
ing the OFV at the lower or upper limit of the allowable range and then comparing
this with its original value.

4.3 The Solver Sensitivity Report
Sensitivity analysis by using graphical analysis is tedious and of course, limited
to two variables. In practice, a model is solved using a computer, and when we
do this when using the Excel Solver we ask for the Sensitivity Report to be cre-
ated. The equivalent procedure for LINGO is described in section A.1.3. We first
illustrate this using the Wood Products example that we have just completed.

4.3.1 Wood Products Example

We recall that the algebraic model for Wood Products is:
X1 — the number of type 1 spindles produced per hour
X2 — the number of type 2 spindles produced per hour.
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maximize 3X1 + 4X2
subject to

Cutting 6X1 + 15X2 ≤ 135 (1)
Polishing 4X1 + 4X2 ≤ 54 (2)

Varnishing 6.5X1 ≤ 58.5 (3)
Painting 4.75X2 ≤ 57 (4)

X1 , X2 ≥ 0

When this is put into Excel it appears in formula view as:

1
2
3
4
5
6
7
8
9
10
11

A B C D E F
Wood Products

OFV X1 X2
=SUMPRODUCT(B4:C4,B5:C5) Type 1 Type 2
Maximize 3 4
Spindles/Hour

Constraints RHS
Cutting 6 15 =SUMPRODUCT($B$5:$C$5,B8:C8) <= 135
Polishing 4 4 =SUMPRODUCT($B$5:$C$5,B9:C9) <= 54
Varnishing 6.5 0 =SUMPRODUCT($B$5:$C$5,B10:C10) <= 58.5
Painting 0 4.75 =SUMPRODUCT($B$5:$C$5,B11:C11) <= 57

In normal view the calculated cells are all zeroes because the variable cells are
blank:



172 CHAPTER 4. SENSITIVITY ANALYSIS

1

2

3

4

5

6

7

8

9

10

11

A B C D E F

Wood Products

OFV X1 X2

0 Type 1 Type 2

Maximize 3 4

Spindles/Hour

Constraints RHS

Cutting 6 15 0 <= 135

Polishing 4 4 0 <= 54

Varnishing 6.5 0 0 <= 58.5

Painting 0 4.75 0 <= 57

After we fill in all the required information on the Solver Parameters box and then
touch the “Solve” button, we are told that an optimal solution has been found.
Before clicking to say that we want to keep it, we click on the Answer report and
the Sensitivity Report buttons.

The Excel file in normal view is now:

1
2
3
4
5
6
7
8
9
10
11

A B C D E F
Wood Products

OFV X1 X2
46.5 Type 1 Type 2

Maximize 3 4
Spindles/Hour 7.5 6

Constraints RHS
Cutting 6 15 135 <= 135
Polishing 4 4 54 <= 54
Varnishing 6.5 0 48.75 <= 58.5
Painting 0 4.75 28.5 <= 57

The Answer Report is:



4.3. THE SOLVER SENSITIVITY REPORT 173

Objective Cell (Max)

Cell Name Original Value Final Value

$A$3 OFV 0 46.5

Variable Cells

Cell Name Original Value Final Value Integer

$B$5 Spindles/Hour Type 1 0 7.5 Contin

$C$5 Spindles/Hour Type 2 0 6 Contin

Constraints

Cell Name Cell Value Formula Status Slack

$D$8 Cutting 135 $D$8<=$F$8 Binding 0

$D$9 Polishing 54 $D$9<=$F$9 Binding 0

$D$10 Varnishing 48.75 $D$10<=$F$10 Not Binding 9.75

$D$11 Painting 28.5 $D$11<=$F$11 Not Binding 28.5

The Answer report gives us all the information that we found when we solved this
model graphically. Now we look at the Sensitivity Report:

Variable Cells

Final Reduced Objective Allowable Allowable

Cell Name Value Cost Coefficient Increase Decrease

$B$5 Spindles/Hour Type 1 7.5 0 3 1 1.4

$C$5 Spindles/Hour Type 2 6 0 4 3.5 1

Constraints

Final Shadow Constraint Allowable Allowable

Cell Name Value Price R.H. Side Increase Decrease

$D$8 Cutting 135 0.111111111 135 54 13.5

$D$9 Polishing 54 0.583333333 54 3.6 18

$D$10 Varnishing 48.75 0 58.5 1E+30 9.75

$D$11 Painting 28.5 0 57 1E+30 28.5

There are two things that are new to us:
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1. Excel’s use of scientific notation was mentioned on page 5. The expression
1E+30, which literally means a 1 followed by 30 zeros, is Excel’s way of
saying “infinite”.

2. The “Reduced Cost” is a term originally developed for minimization mod-
els. For a variable not currently in the solution (i.e. its value is 0) the reduced
cost is the amount by which the coefficient of that variable must be reduced
in order to make that variable > 0. It is not applicable in this example be-
cause both variables are in the solution.

4.3.2 Using the Sensitivity Report
When considering any proposed change to a coefficient, one needs to first de-
termine whether the proposed change falls inside or outside the allowable range.
When a change is within the allowable range, the effect on the objective function
value is always easy to compute. When it falls outside this range, we are limited
in what we can conclude.

Within the Allowable Range

Objective Function Coefficients When an objective function coefficient is changed
within the allowable range, there is no change to the variables, but the OFV will
change because the coefficient has changed. For example, suppose that the sell-
ing price of type 2 spindles increases by $2.00 per spindle. This is less than the
allowable increase of $3.50. We are selling six type 2 spindles. Hence the OFV
goes up by $2.00(6) = $12.00.

Non-Binding Constraints When the right-hand side value of a non-binding
constraint is changed within the allowable range, there is no change to the vari-
ables, and no change to the OFV. For example, suppose that we are considering
lowering the rhs value of the varnishing constraint by 5 minutes. This is less than
the allowable decrease of 9.75 minutes. Hence we obtain the same solution, and
the OFV remains unchanged.

Binding Constraints When the right-hand side value of a binding constraint is
changed within the allowable range, there will be a change to the variables (but
we cannot tell how from the sensitivity report), and the OFV will change by the
product of the shadow price and the change to the rhs value. For example, suppose
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that the cutting constraint’s rhs is increased from 135 to 162. This increase of
27 units is allowable (27 ≤ 54). The shadow price on the cutting constraint is
0.11111111. Therefore, the OFV will increase by 0.111111111(27) = $3.00.

Outside the Allowable Range

Objective Function Coefficients When an objective function coefficient is changed
beyond the allowable range, the variables will change (but we cannot predict how
from the sensitivity report). The OFV will change by at least what it would have
changed had we not gone beyond the allowable range. For example, suppose that
the selling price of type 2 spindles increases by $4.00 per spindle. This is beyond
the allowable increase of $3.50. We are selling six type 2 spindles. Therefore the
increase to the OFV will be at least $3.50(6) = $21.00.

The Possibility of Infeasibility When the rhs of a constraint is changed beyond
the allowable range, it might increase the size of the feasible region, leave the
feasible region unchanged, or decrease the size of the feasible region. The first
two cases are not a problem. However, a decrease could be problem – it’s possible
that if the decrease were large enough that it could entirely eliminate the feasible
region. In the next two paragraphs we must assume that this is not happening, or
else interpret the OFV of an infeasible model to be −∞ for a maximization model
or ∞ for a minimization model.

Non-Binding Constraints When the right-hand side value of a non-binding
constraint is changed beyond the allowable range, both the variables and the OFV
will change, but we cannot predict either of these things numerically. However,
we can say that the OFV will be impaired. In other words, the OFV will decrease
for a maximization model, or increase for a minimization model. For example,
suppose that we are considering lowering the rhs value of the varnishing con-
straint by 10 minutes. This is more than the allowable decrease of 9.75 minutes.
Hence the OFV will decrease (but we cannot predict by how much).

Binding Constraints When the right-hand side value of a binding constraint
is changed beyond the allowable range, the OFV will change by at least what it
would have changed had we not gone beyond the allowable range. For exam-
ple, suppose that the cutting constraint’s rhs is increased from 135 to 200. This
increase of 65 units is beyond the allowable increase of 54. The shadow price
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is 0.11111111. Therefore, the OFV will increase by at least 0.111111111(54) =
$6.00.

4.3.3 Example 1: Maximization
A chemical laboratory can make three types of chemical powders. The variables
X1, X2, and X3 represent the number of kilograms per day of the three chemi-
cals. The chemical company has made the following profit-maximization model
in Excel.

1

2

3

4

5

6

7

8

9

10

11

A B C D E F G

Chemical Laboratory Model

OFV X1 X2 X3

0 Chemical 1 Chemical 2 Chemical 3

Maximize 32 25 18

kg/day

Constraints RHS

Conveyor 3 5 7 0 <= 550

Shipping 5 6 3 0 <= 800

Production 2 4 8 0 >= 360

Mixing 8 9 4 0 <= 880

We use the Solver to obtain:

1

2

3

4

5

6

7

8

9

10

11

A B C D E F G

Chemical Laboratory Model

OFV X1 X2 X3

3600 Chemical 1 Chemical 2 Chemical 3

Maximize 32 25 18

kg/day 90 0 40

Constraints RHS

Conveyor 3 5 7 550 <= 550

Shipping 5 6 3 570 <= 800

Production 2 4 8 500 >= 360

Mixing 8 9 4 880 <= 880
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The Answer Report is:

Objective Cell (Max)

Cell Name Original Value Final Value

$A$3 OFV 0 3600

Variable Cells

Cell Name Original Value Final Value Integer

$B$5 kg/day Chemical 1 0 90 Contin

$C$5 kg/day Chemical 2 0 0 Contin

$D$5 kg/day Chemical 3 0 40 Contin

Constraints

Cell Name Cell Value Formula Status Slack

$E$10 Production 500 $E$10>=$G$10 Not Binding 140

$E$11 Mixing 880 $E$11<=$G$11 Binding 0

$E$8 Conveyor 550 $E$8<=$G$8 Binding 0

$E$9 Shipping 570 $E$9<=$G$9 Not Binding 230

We see that the solution is to produce 90 kg (all units are per day) of chemical 1,
none of chemical 2, and 40 kg of chemical 3. The solution variables are therefore
X1 and X3. The profit obtained using this production plan is $3600. The conveyor
and mixing constraints are binding.
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The Sensitivity Report is:

Variable Cells

Final Reduced Objective Allowable Allowable

Cell Name Value Cost Coefficient Increase Decrease

$B$5 kg/day Chemical 1 90 0 32 4 11.86046512

$C$5 kg/day Chemical 2 0 ‐11.59090909 25 11.59090909 1E+30

$D$5 kg/day Chemical 3 40 0 18 56.66666667 2

Constraints

Final Shadow Constraint Allowable Allowable

Cell Name Value Price R.H. Side Increase Decrease

$E$10 Production 500 0 360 140 1E+30

$E$11 Mixing 880 3.863636364 880 389.2307692 565.7142857

$E$8 Conveyor 550 0.363636364 550 990 110

$E$9 Shipping 570 0 800 1E+30 230

Changes to the Objective Function Coefficients

We consider what happens to the OFV in each of the following situations:

1. The price [per kg] of powder 1: (a) decreases by $10; (b) increases by $5.

2. The price of powder 2: (a) decreases by $18; (b) increases by $9; (c) in-
creases by $15.

3. The price of powder 3: (a) increases by $30; (b) decreases by $7.

Powder 1 The amount of powder 1 made and sold is represented by variable X1,
which is a solution variable. The price per kg is the coefficient of this variable,
which is currently $32 (don’t confuse this with the value of the variable itself,
which is 90 kg). From the “Variable Cells” section of the sensitivity report, we
see that the allowable increase is 4, and the allowable decrease is 11.86046512. In
other words, we would obtain the same solution even if the coefficient were to rise
from 32 to 32+4 = 36, or if it were to fall to 32−11.86046512 = 20.13953488.
Hence a decrease of $10 (which is ≤ 11.86046512) would have no effect on the
solution; they would still make 90 kg per day of powder 1, and 40 kg per day of
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powder 3. However, the OFV would decrease by $10(90) = $900, i.e. it would
fall from $3600 to $2700. We could also state this as ∆ OFV =−$900. A rise of
$5 (> 4) is beyond the allowable increase, so we would obtain a new solution, and
we therefore cannot predict the new value of the OFV exactly. We would have to
re-run the model on the Solver replacing the 32 with 37, if we wanted to know the
new value exactly. However, we can state that the new OFV will be at least what it
would be based on the allowable increase. An increase of 4 would cause the profit
to increase by $4(90) = $360, hence an increase of 5 would cause an increase of
at least this much, i.e. ∆ OFV≥ $360.

Powder 2 Variable X2 is not in the solution; the current price of $25 per kg isn’t
high enough to justify making any quantity of powder 2. Ordinary logic therefore
tells us that a price decrease is not going to change anything; a decrease in the
price of $18 per kg does not change either the solution or the OFV. Note that the
allowable decrease is infinite. For a price increase, we cannot determine what will
happen by logic – we need to look at the allowable increase from the sensitivity
report. This figure is seen to be 11.59090909. Hence an increase of $9 per kg
is less than the allowable increase, and there would be no change to the solution.
Furthermore, there would be no change to the OFV, because we are not making
any powder 2. If however the price were to rise by $15 per kg, this would surpass
the allowable increase. The solution would change, and the OFV would increase,
but neither of these things could be quantified without re-running the model.

Powder 3 The amount of powder 3 made and sold is represented by variable X3.
The current coefficient of this solution variable is $18. We see from the printout
that the allowable increase is 562

3 , and the allowable decrease is 2. In other words,
we would obtain the same solution even if the coefficient were to fall from 18 to
18− 2 = 16, or if it were to rise to 18+ 562

3 = 742
3 . Hence an increase of $30

(which is ≤ 562
3 ) would have no effect on the solution; they would still make 90

kg per day of powder 1, and 40 kg per day of powder 3. However, the OFV would
increase by $30(40) = $1200. A decrease of $7 (> 2) is beyond the allowable
decrease, so we would obtain a new solution. The new OFV will be at most what
it would be based on the allowable decrease. A decrease of 2 in the rhs would
cause the profit to decrease by $2(40) = $80, hence a decrease of 7 would cause
a decrease of at least this much. We must be careful with the inequality here; the
magnitude is at least $80. Hence if the change is say $80 or more downwards,
then ∆ OFV≤−$80.



180 CHAPTER 4. SENSITIVITY ANALYSIS

Changes to the Right-Hand-Side Values

We consider what happens to the OFV in each of the following situations:

1. The right-hand side value (rhs) of the conveyor constraint: (a) decreases by
100; (b) decreases by 480; (c) increases by 550; (d) increases by 1200.

2. The rhs of the shipping constraint: (a) decreases by 100; (b) increases by
200; (c) decreases by 300.

3. The rhs of the minimum production constraint: (a) increases by 150; (b)
increases by 110.

4. The rhs of the mixing constraint: (a) decreases by 330; (b) decreases by
600; (c) increases by 275.

Conveyor Since the conveyor constraint is binding, any change to the rhs will
affect the solution. While the new solution is not easily found without re-running
the model, the change to the OFV is easy to predict within the allowable range.
We see from the sensitivity report that this constraint has an allowable increase
of 990 and an allowable decrease of 110. Hence a decrease of 100 is within the
allowable range. To see the effect on the OFV, we need the shadow price for this
constraint, which is 0.363636364. The OFV will therefore change by:

∆ OFV = (shadow price) (∆ rhs)
= 0.363636364(−100)
≈ −36.36

(Note: we can say that the change is −36.36, or the decrease is 36.36.) If we
want the new OFV this is 3600− 36.3636 = 3563.64. A decrease of 480 would
be beyond the allowable decrease of 110. The decrease in the OFV would there-
fore be at least 0.363636364(110) = $40, or we could write ∆ OFV ≤ −$40. An
increase of 550 would be allowable, and would cause the OFV to increase by
0.363636364(550) = $200. An increase of 1200 would exceed the allowable in-
crease of 990, so the OFV would increase by at least 0.363636364(990) = $360.

Shipping and Minimum Production The shipping and minimum production
constraints are non-binding, so the sensitivity analysis is very easy. If the pro-
posed change is within the allowable range, then there is no change to the OFV. If
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the proposed change is beyond this range, then the OFV will be impaired, i.e. it
would decline for a maximization model. The rhs of the shipping constraint can
be increased indefinitely or be decreased by up to 230. Hence a decrease of 100
or an increase of 200 would not affect the OFV. A decrease of 300 would cause
the OFV to decrease, though we cannot predict by how much. The minimum
production constraint has an allowable increase of 140, and it can be decreased
indefinitely. An increase of 150 would cause the OFV to fall; an increase of 110
would leave it unchanged.

Mixing Finally, the mixing constraint is binding. It has an allowable increase of
389.2307692, and an allowable decrease of 565.7142857. The shadow price on
the mixing constraint is 3.863636364. Hence a decrease of 330 is within the al-
lowable range and the OFV will fall by 3.863636364(330) = 1275.00. A decrease
of 600 would be beyond the allowable range; the OFV would fall by at least
3.863636364(565.714294) = 2185.71. An increase of 275 would be within the
allowable range, and the OFV would increase by 3.863636364(275) = 1062.50.

4.3.4 Example 2: Minimization

A company buys food products from some or all of five suppliers. These are mixed
together. The mixture must meet minimum requirements for three nutrients, have
no more than a specific amount of fat, and then be packed into 14.4 kg bags. The
variables have been defined as the amount of input of each of the five suppliers
that goes into one bag of mixed product, and are denoted as X1 to X5. In this
example the objective function coefficients are costs rather than revenues.

The company has made the following cost minimization model in Excel:



182 CHAPTER 4. SENSITIVITY ANALYSIS

1

2

3

4

5

6

7

8

9

10

11

12

A B C D E F G H I

Nutritional Requirements Model 

OFV X1 X2 X3 X4 X5

0 Food 1 Food 2 Food 3 Food 4 Food 5

Minimize 3.7 8.3 5.1 2.9 3.1

kg

Constraints RHS

Nutrient 1 3 4 6 5 2 0 >= 40.5

Nutrient 2 8 6 2 3 5 0 >= 81.0

Nutrient 3 4 5 8 7 3 0 >= 54.9

Fat 5 3 5 6 4 0 <= 64.8

Mass Balance  1 1 1 1 1 0 = 14.4

By using the Solver we obtain:

1

2

3

4

5

6

7

8

9

10

11

12

A B C D E F G H I

Nutritional Requirements Model 

OFV X1 X2 X3 X4 X5

49.94 Food 1 Food 2 Food 3 Food 4 Food 5

Minimize 3.7 8.3 5.1 2.9 3.1

kg 4.7 0 1.3 0.6 7.8

Constraints RHS

Nutrient 1 3 4 6 5 2 40.5 >= 40.5

Nutrient 2 8 6 2 3 5 81 >= 81.0

Nutrient 3 4 5 8 7 3 56.8 >= 54.9

Fat 5 3 5 6 4 64.8 <= 64.8

Mass Balance  1 1 1 1 1 14.4 = 14.4

The Answer Report is:
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Objective Cell (Min)

Cell Name Original Value Final Value

$A$3 OFV 0 49.94

Variable Cells

Cell Name Original Value Final Value Integer

$B$5 kg Food 1 0 4.7 Contin

$C$5 kg Food 2 0 0 Contin

$D$5 kg Food 3 0 1.3 Contin

$E$5 kg Food 4 0 0.6 Contin

$F$5 kg Food 5 0 7.8 Contin

Constraints

Cell Name Cell Value Formula Status Slack

$G$11 Fat 64.8 $G$11<=$I$11 Binding 0

$G$12 Mass Balance  14.4 $G$12=$I$12 Binding 0

$G$8 Nutrient 1 40.5 $G$8>=$I$8 Binding 0

$G$9 Nutrient 2 81 $G$9>=$I$9 Binding 0

$G$10 Nutrient 3 56.8 $G$10>=$I$10 Not Binding 1.9

The optimal solution is for each bag of product to be composed of 4.7 kg from
supplier 1, none from supplier 2, 1.3 kg from supplier 3, 0.6 kg from supplier
4, and 7.8 kg from supplier 5. The cost of the optimal mixture is $49.94. All
constraints except the one for Nutrient 3 are binding.

The Sensitivity Report is:



184 CHAPTER 4. SENSITIVITY ANALYSIS

Variable Cells

Final Reduced Objective Allowable Allowable

Cell Name Value Cost Coefficient Increase Decrease

$B$5 kg Food 1 4.7 0 3.7 1.657142857 1.12

$C$5 kg Food 2 0 1.288888889 8.3 1E+30 1.288888889

$D$5 kg Food 3 1.3 0 5.1 0.828571429 2.327272727

$E$5 kg Food 4 0.6 0 2.9 1.706666667 0.773333333

$F$5 kg Food 5 7.8 0 3.1 1.866666667 8.533333333

Constraints

Final Shadow Constraint Allowable Allowable

Cell Name Value Price R.H. Side Increase Decrease

$G$11 Fat 64.8 ‐1.422222222 64.8 2.127272727 0.72

$G$12 Mass Balance  14.4 5.055555556 14.4 0.327272727 1.017391304

$G$8 Nutrient 1 40.5 1.088888889 40.5 1.8 1.71

$G$9 Nutrient 2 81 0.311111111 81 3.6 16.92

$G$10 Nutrient 3 56.8 0 54.9 1.9 1E+30

Changes to the Objective Function Coefficients

We consider what happens to the OFV in each of the following situations:

1. The cost [per kg] from supplier 1: (a) increases by $1.50; (b) decreases by
$2.50.

2. The cost from supplier 2: (a) decreases by $1.28; (b) increases by $50.

3. The cost from supplier 3: (a) increases by 30 cents; (b) increases by 85
cents; (c) decreases by $2.

4. The cost from supplier 4: (a) decreases by 50 cents; (b) decreases by $1.00;
increases by $1.50.

5. The cost from supplier 5: (a) decreases by $2; (b) increases by $5.

Supplier 1 Doing a sensitivity analysis on the objective function coefficients is
no different for minimization than it is for maximization. The company is cur-
rently paying $3.70 per kg to purchase 4.7 kg (per bag of finished product) from
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Supplier 1; there is an allowable increase of 1.657142857 and an allowable de-
crease of 1.12. An increase of $1.50 is within the allowable range, and the OFV
would increase by $1.50(4.7) = $7.05. A decrease of $2.50 is outside the allow-
able range, so the OFV would fall by at least $1.12(4.7) = $5.264.

Supplier 2 The coefficient of X2 can be increased indefinitely or be decreased
by just under $1.29 (1.288888889). Hence a decrease of $1.28 or an increase of
$50 are both within the allowable range, and since X2 is not in the solution, there
would be no change to the OFV.

Supplier 3 The range for the coefficient of X3 is an increase of 0.828571429
and a decrease of 2.327272727 from its current value of 5.1. Since X3 = 1.3, an
increase of 30 cents (i.e. 0.30) would increase the OFV by 0.30(1.3) = $0.39. An
increase of 85 cents would be beyond the range; the OFV would increase by at
least 0.828571429(1.3)≈ $1.077. A decrease by $2 would cause the OFV to fall
by $2(1.3) = $2.60.

Supplier 4 The current cost for purchases from Supplier 4 is $2.90 per kg;
this has an allowable increase of $1.706666667 and an allowable decrease of
$0.773333333. Hence a decrease of 50 cents is within the range, a decrease of
a dollar would be outside the range, and an increase of $1.50 would be within
the range. Since X4 = 0.6, a 50 cent decrease would cause the OFV to fall by
$0.50(0.6) = $0.30, a one dollar decrease would cause the OFV to fall by at least
$0.773333333(0.6) = $0.464, and $1.50 increase would cause the OFV to rise by
$1.50(0.6) = $0.90.

Supplier 5 They pay $3.10 per kg from Supplier 5 and are currently ordering
7.8 kg per bag of final product. The allowable increase is $1.866666667 and the
allowable decrease is $8.533333333. Hence a decrease of $5 would be within the
allowable range but an increase of $5 would be outside the range. A decrease of
$2 would cause the OFV to fall by $2.00(7.8) = $15.60. An increase of $5 would
cause the OFV to rise by at least $1.866666667(7.8) = $14.56.

Changes to the Right-Hand-Side Values

We consider what happens to the OFV in each of the following situations:
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1. The right-hand side value (rhs) of the Nutrient 1 constraint: (a) increases by
1.5; (b) decreases by 1.6; (c) decreases by 2.1.

2. The rhs of the Nutrient 2 constraint: (a) increases by 3.0; (b) decreases by
15; (c) decreases by 20.

3. The rhs of the Nutrient 3 constraint: (a) increases by 1.5; (b) increases by
2.5.

4. The rhs of the fat constraint: (a) decreases by 0.5; (b) decreases by 1.8; (c)
increases by 0.34.

5. The rhs of the mass constraint: (a) decreases by 0.9 kg; (b) increases by 300
g; (c) increases by 700 g.

Nutrient 1 The rhs of the Nutrient 1 constraint is currently 40.5. This binding
constraint has an allowable increase of 1.8 and an allowable decrease of 1.71.
The shadow price is 1.088888889. An increase of 1.5 would cause the OFV to
increase by 1.088888889(1.5) ≈ $1.633. A decrease of 1.6 is allowable, so the
change to the OFV would be 1.088888889(−1.6) ≈ $− 1.742, i.e. ∆ OFV =
−$1.742. Notice that decreasing the rhs of this ≥ constraint makes the restriction
less stringent, and the cost decreases as a result. A decrease of 2.1 is beyond
the allowable range; the OFV would change by at least 1.08888889(−1.71) =
$−1.862, or we could say that it will decrease by at least $1.862.

Nutrient 2 For the Nutrient 2 constraint, the allowable range is−16.92≤∆ rhs≤
3.6, and the shadow price is $0.311111111. Hence an increase of 3 would be al-
lowable, as would a decrease of 15, but a decrease of 20 would be beyond the
allowable range. An increase of 3 would cause an increase of ($0.311111111)3≈
$0.933. A decrease of 15 would cause a change of ($0.311111)(−15)≈−$4.667,
i.e. the OFV would decrease by $4.667. A decrease of 20 would cause a change
of at least ($0.311111) (−16.92) = −$5.264, i.e. the OFV would decrease by at
least $5.264.

Nutrient 3 The Nutrient 3 constraint is non-binding, which makes things easy.
The allowable increase is 1.9, hence an increase of 1.5 would have no effect at all,
while an increase of 2.5 would cause there to be a new solution. Because such a
change would reduce the feasible region, it would cause the OFV to be impaired
(i.e. rise in this situation).
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Fat The fat constraint has an allowable increase of 2.127272727, an allowable
decrease of 0.72, and a shadow price of −1.422222222. A decrease of 0.5 is
therefore allowable, and would cause the OFV to change by −1.422222(−0.5)≈
$0.711, i.e. ∆ OFV = $0.711. A decrease of 1.8 is beyond the allowable range;
the OFV would change by at least −1.422222(−0.72) = $1.024, i.e. ∆ OFV ≥
1.024. An increase of 0.34 is allowable, and would cause the OFV to change by
−1.422222222(0.34)≈ $0.484, i.e. ∆ OFV =−$0.484.

Mass Finally the mass constraint has an allowable increase of 0.327272727, an
allowable decrease of 1.017391304, and a shadow price of 5.055555556. The
current rhs value is 14.4, and the units are kg (kilograms). A decrease of 0.9 kg
is therefore allowable, and the change to the OFV would be 5.055555(−0.9) =
−$4.55. In other words, the OFV would fall by $4.55. Occasionally a conver-
sion factor is required to analyze something; we re-state the 300 grams as 0.3
kg for consistency with the way the constraint was written. An increase of 0.3
kg is allowable, and the change to the OFV is (5.055555556)0.3 ≈ $1.5174, i.e.
∆ OFV = $1.517. An increase of 700 g or 0.7 kg exceeds the allowable increase,
the OFV would rise by at least 5.055555(0.327273) = $1.655.

4.4 Two or More Changes

When two or more (rather than one) coefficients are varied, a new level of com-
plexity is introduced. Ironically, the effect of changing all the c j’s or all the bi’s
may be easier to analyze than only changing some of them, so we begin with these
special cases.

4.4.1 Two Special Cases

If the objective function is changed by multiplying each coefficient by the same
positive number, then the optimal solution is unaffected, except that OFV∗ is also
multiplied by the same positive number. For example

min 5X1 +8X2 +7X3

could be changed to
min 10X1 +16X2 +14X3
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without affecting the optimal values of the variables. The OFV of the second
function will be twice that of the first. One way of understanding this property
is by thinking of the first objective function being in pounds sterling, and the
second being in dollars, with the exchange rate being £ = $2.00. Another way of
understanding this property is to think of making an isovalue line in the graphical
method. As long as one objective function is merely a positive multiple of another,
their isovalue lines will be parallel and are optimized at the same corner of the
feasible region.

Another straightforward case is when each right hand side value is multiplied
by the same positive (> 0) constant. In this situation the solution will change,
but it is easy to predict how it will change. If the initial model has right hand
side values b1, . . . ,bm, and an optimal solution X∗1 , . . . ,X

∗
n , and if the new model is

the same except that the right hand sides are now kb1, . . . ,kbm, where k > 0, then
the new optimal solution will be kX∗1 , . . . ,kX∗n . The new OFV will be k times the
initial OFV.6

4.4.2 General Case (Based on the Answer and Sensitivity Re-
ports)

Here we are interested in obtaining information about two or more changes using
only the Answer and Sensitivity Reports from the Excel Solver.

When two (or more) simultaneous changes are made to either the objective
function coefficients or the right hand side values of a linear optimization model,
there are four known situations which do not require the running of a new model:

6This property can be seen by defining Yj =
X j
k for j = 1, . . . ,n. Hence constraint i of the new

model can be written successively as:

n

∑
j=1

ai jX j = kbi

therefore
n

∑
j=1

ai jkYj = kbi

therefore
n

∑
j=1

ai jYj = bi

Because this has a form identical with the original model, Y ∗j = X∗j for each value of j. Hence the
new value of X∗j is k times its former value.
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1. Changing the objective function coefficients of two (or more) variables
which are not in the solution (i.e. the values of the variables are 0). If
both (or all) the proposed changes to the c j coefficients are within the al-
lowed ranges, then the current solution remains optimal. The OFV does not
change, because the non-solution variables contribute nothing to it.

2. Changing the right hand side coefficients of two (or more) non-binding con-
straints. If both (or all) the proposed changes in the bi coefficients are within
the allowed ranges, then the current solution remains unchanged. Since the
solution does not change, the OFV remains the same.

3. Changing the objective function coefficients of two (or more) variables, at
least one of which is in the solution (i.e. the value of the variable is >
0). In this case we need to use the “100% Rule” for objective function
coefficients.7 Suppose that we wish to change the coefficient of variable X j
by an amount ∆c j, which is in the allowable range.

If ∆c j > 0, we define

r j =
∆c j

allowable increase in c j

If ∆c j < 0, we define

r j =
|∆c j|

allowable decrease in c j

If ∆c j = 0, then r j = 0.

Hence for all j, 0 ≤ r j ≤ 1. The 100% Rule is that if ∑
n
j=1 r j ≤ 1, then the

current solution will remain optimal. (The “100%” comes from the fact that
1, the rhs of the equation, is 100%.) If the condition does not hold, i.e. if
∑

n
j=1 r j > 1, then we cannot conclude anything one way or the other.

4. Changing the right hand side values of two (or more) constraints, where at
least one of these is binding. In this case we need to use the “100% Rule”
for right hand side coefficients. Suppose that we wish to change the right
hand side of constraint i by an amount ∆bi, which is in the allowable range.

7The 100% rules are due to Bradley, Stephen P., Arnoldo C. Hax, and Thomas L. Magnanti,
Applied Mathematical Programming (Reading, MA: Addison-Wesley, 1977).
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If ∆bi > 0, we define

ri =
∆bi

allowable increase in bi

If ∆bi < 0, we define

ri =
|∆bi|

allowable decrease in bi

If ∆bi = 0, then ri = 0.

Hence for all i, 0 ≤ ri ≤ 1. As before, the 100% Rule is that if ∑
m
i=1 ri ≤ 1,

then the set of binding constraints remain unchanged. The position of the
optimal corner will shift, just as in the case of a single change to the right
hand side, but it is still the same corner. If the condition holds, the shadow
prices are unaffected. If the condition does not hold, i.e. if ∑

m
i=1 ri > 1, then

we cannot conclude anything one way or the other.

4.4.3 Using the 100% Rules – An Example

Here we illustrate the use of the 100% rules, using the Wood Products example
(introduced on page 154). Here is the Sensitivity Report (first seen on page 173).

Variable Cells

Final Reduced Objective Allowable Allowable

Cell Name Value Cost Coefficient Increase Decrease

$B$5 Spindles/Hour Type 1 7.5 0 3 1 1.4

$C$5 Spindles/Hour Type 2 6 0 4 3.5 1

Constraints

Final Shadow Constraint Allowable Allowable

Cell Name Value Price R.H. Side Increase Decrease

$D$8 Cutting 135 0.111111111 135 54 13.5

$D$9 Polishing 54 0.583333333 54 3.6 18

$D$10 Varnishing 48.75 0 58.5 1E+30 9.75

$D$11 Painting 28.5 0 57 1E+30 28.5
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Changes to the c j Coefficients

In this model, if we were to decrease c1 (the objective function coefficient of X1,
the number of Type 1 spindles made each hour) to 2.3 and increase c2 to 5.6,
would the current solution remain optimal?

The relevant data comes from the Sensitivity Report. The current value of c1 is
3, and the allowable decrease is 1.4; the current value of c2 is 4 and the allowable
increase is 3.5.

Hence

r1 =
|2.3−3|

1.4
= 0.5

and

r2 =
5.6−4

3.5
= 0.457143

Hence r1 + r2 = 0.957143 ≤ 1.0. The condition holds and therefore the current
solution remains optimal: X∗1 remains at 7.5, and X∗2 remains at 6.0. The OFV
changes of course; its new value is 2.3X∗1 +5.6X∗2 = 50.85.

Figure 4.5 shows the region where the 100% rule for objective function coef-
ficients applies. This region is the quadrilateral ACBD, which is shaded in gold.
This is a segment of the region shaded in gold and blue of infinite size in which
the two coefficients result in the same optimal solution. When for a particular
combination (c1,c2) the 100% rule shows that the left-hand side is ≤ 1, this cor-
responds with a point in the gold region. When the left-hand side is > 1, the point
is either in the blue region or the white region. Therefore, based on the 100%
rule alone, we cannot conclude anything one way or the other. This is why the
100% rule is a sufficiency condition, but not a necessary condition. We see that
the graphical analysis done earlier in this chapter yields far more information than
does the 100% rule. However, the graphical analysis can only be done when there
are just two variables, while the 100% rules work on models of any size.

Changes to the bi Coefficients

Let us consider the following changes to the rhs values of the Wood Products
model:

(1) Cutting from 135 to 163 (∆b1 = 28)
(2) Polishing from 54 to 48 (∆b2 =−6)
(3) Varnishing from 58.5 to 59 (∆b3 = 0.5)
(4) Painting from 57 to 54 (∆b4 =−3)
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Does the current set of binding constraints remain optimal?
The changes to the rhs of both the cutting and varnishing constraints are pro-

posed increases, so from the Sensitivity report we find that the allowable increase
for the cutting constraint is 54, and for the varnishing constraint it is infinite. Both
the polishing and painting constraints have proposed decreases, so from the Sen-
sitivity report we find that the allowable decrease for the polishing constraint is
18, and for the painting constraint it is 28.5.

Hence we calculate the ri’s as:

r1 = 28
54 = 0.5185

r2 = 6
18 = 0.3333

r3 = 0.5
∞

= 0.0000
r4 = 3

28.5 = 0.1053

∑
4
i=1 ri = 0.9571

Since 0.9571 ≤ 1 the condition is met and therefore constraints (1) and (2) are
still binding. We can therefore find the new values of X∗1 and X∗2 by solving two
equations in two unknowns, which come from the two binding constraints with
their new right-hand side values.

6X1 + 15X2 = 163
4X1 + 4X2 = 48

Solving we obtain X∗1 = 18
9 and X∗2 = 101

9 . The new OFV is 3×18
9 +4×101

9 =

461
9 or about $46.1111.
However, if all we wish to obtain is the change to the OFV, we just need to use

the two shadow prices and the changes to the right-hand side values. The shadow
prices are 1

9 for the cutting constraint and 7
12 for the polishing constraint. Hence

∆OFV = 28× 1
9 +(−6)× 7

12 =−0.388888. If we add this to the current value of
$46.50, we obtain $46.1111.

4.5 Summary
Managers often need to know how the optimal solution to a model might change
if one or more of the parameters of the model were to change. By a graphical
analysis for two-variable models, or by using the Excel Solver for larger models,
one can identify a range for a particular c j coefficient for which the optimal so-
lution will not change, or a range for a particular bi value for which the optimal
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set of binding constraints will not change. Sometimes, we are able to determine
what happens when two or more coefficients are altered using only the final Excel
Solver output.

4.6 Problems for Student Completion

4.6.1 Sensitivity Analysis by Graphing

maximize 7X1 + 5X2
subject to

(1) 4X1 + 6X2 ≤ 24
(2) 2X2 ≤ 7
(3) 8X1 + 4X2 ≤ 32
(4) 12X1 + 10X2 ≤ 60

X1 , X2 ≥ 0

(a) Solve the model above graphically.

(b) Suppose that the objective function is now maximize c1X1 + c2X2. Perform a
sensitivity analysis to determine when the current solution remains optimal in
the following cases:

(i) both c1 and c2 may vary;

(ii) c2 = 5, c1 may vary;

(iii) c1 = 7, c2 may vary.

(c) Perform a sensitivity analysis for the non-binding constraints.

(d) Perform a sensitivity analysis for the binding constraints, finding the allow-
able range for each constraint and determine the algebraic expressions for the
variables.

(e) From the last part of (d), find the shadow price for each binding constraint.
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4.6.2 A Maximization Problem
A garment factory can make skirts, blouses, and dresses. After deducting all
variable costs, the net revenue is $32 per skirt, $27 per blouse, and $40 per dress.
There are three operations, each of which limits the amount of production: cutting,
assembly, and finishing. In addition, each garment must be inspected. Since union
rules require that at least one inspector be on duty at all times, they will make a
constraint to keep at least one inspector busy. The model has been formulated as:

Let X1, X2, and X3 represent respectively the number of skirts, blouses, and
dresses to be made each hour.

maximize 32X1 + 27X2 + 40X3

subject to

Cutting 5X1 + 4X2 + 2X3 ≤ 64
Assembly 12X1 + 6X2 + 8X3 ≤ 160
Finishing 7X1 + 5X2 + 8X3 ≤ 146

Inspection 6X1 + 4X2 + 3X3 ≥ 72

non-negativity X1 , X2 , X3 ≥ 0

(a) Solve using a spreadsheet Solver, and create the Answer and Sensitivity Re-
ports.

(b) State the solution in words, and indicate which constraints are binding.

(c) By using the information from the Sensitivity Report (rather than by re-running
the model each time), give the predicted change to the objective function value
(and the reasoning behind your answer) for the following situations (where
each situation is independent of the others). If the OFV cannot be predicted
exactly, then give an answer such as “the OFV will increase by at least $90”.

(i) The price of each skirt rises by $5.00.

(ii) There are three fewer units of assembly.

(iii) The price of each dress falls from $40 to $27.

(iv) The number of units of cutting increases by 10.

(v) The number of units of finishing increases by 6.

(vi) The price of a blouse increases by $1.50, and the price of a dress in-
creases by $2.00.
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(vii) The price of a blouse decreases by $1.20, and the price of a dress in-
creases by $1.40.

(viii) There are now ten more units of cutting, but one fewer unit of finishing.

(ix) Six more units of cutting become available, and there are now two more
units of finishing.

4.6.3 A Minimization Problem
A company which makes chocolate bars needs to buy some exotic nuts: walnuts,
chestnuts, and hazelnuts. They do not have to buy any of any one type, but they do
need to satisfy certain combinations of types, which has been modelled using three
constraints. Also, there is a capacity restriction. The model has been formulated
as:

Let X1, X2, and X3 represent respectively the number of kilograms of walnuts,
chestnuts, and hazelnuts to be used each hour in the chocolate bar plant.

minimize 2X1 + 7X2 + 4X3

subject to

Combination 1 5X1 + 8X2 + 6X3 ≥ 230
Combination 2 2X1 + X2 + 4X3 ≥ 145
Combination 3 3X1 + 4X2 + 5X3 ≥ 196

Capacity 8X1 + 9X2 + 4X3 ≤ 252

non-negativity X1 , X2 , X3 ≥ 0

(a) Solve using a spreadsheet Solver, and create the Answer and Sensitivity Re-
ports.

(b) State the solution in words, and indicate which constraints are binding.

(c) By using the information from the Sensitivity Report (NOT by re-running the
model each time), give the predicted change to the objective function value
(and the reasoning behind your answer) for the following situations (where
each situation is independent of the others). If the OFV cannot be predicted
exactly, then give an answer such as “the OFV will decrease by at least $50”.

(i) The price of hazelnuts rises by $1.20 per kg.

(ii) The price of chestnuts falls by $2.70 per kg.
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(iii) An extra 100 units of capacity becomes available.

(iv) The requirement for combination 1 falls by 25 units.

(v) The requirement for combination 3 increases by 92 units.

(vi) The price of walnuts rises by 15 cents per kg, while the price of hazelnuts
falls by 40 cents per kg.

(vii) The price of chestnuts falls by $4 per kg, while the price of hazelnuts
rises by $1 per kg.

(viii) The right-hand side value of Combination 3 rises by 80 units, while the
RHS of Capacity rises by 20 units.

(ix) The RHS of Combination 3 decreases by 4 units, while the RHS of
Capacity increases by 21 units.

4.6.4 Parametric Analysis

Sometimes we wish to analyze the effect of changing a parameter over a wide
range of values. Performing changes over a wide range is known as parametric
analysis. This can be accomplished by using the sensitivity analysis to establish
the range above and below the current value, and then changing the current value
to a number outside the current range to find a new range for this parameter. For
example, consider the following model:

minimize 5X1 + 8X2
subject to

(1) 2X1 + 5X2 ≥ 910
(2) 4X1 + 3X2 ≥ 1092
(3) X1 + 9X2 ≥ 819

X1 , X2 ≥ 0

(a) Solve this model graphically.

(b) From the graph, perform a sensitivity analysis on b2, the rhs value of con-
straint (2).

(c) Re-solve the model using the Excel Solver.
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(d) Now we consider changes to b2 beyond what we determined in part (b). The
set of constraints which bound the feasible region changes several times as
b2 is varied, but between these changes the shadow price within a specific
allowable range will be constant. Use Excel to determine the set of allowable
ranges for 0≤ b2 ≤ 4000.

(e) Make a graph of the optimal OFV as a function of b2, for 0≤ b2 ≤ 4000.



Chapter 5

Network Models

In this chapter we consider several types of “network” models. The word network
comes from the fact that all these models can be thought of as connected points on
a physical network. That being said, in the original formulation of these models,
each was developed on its own, and it is only later that they came to be studied
as a particular class of models. All of these models have their own specialized
algorithms (i.e. a procedure for finding the solution). However, to solve models
for the assignment, transportation, and transshipment problems, we will not use
purpose-built algorithms, but instead will use the Excel Solver (for which the
underlying algorithm is the simplex algorithm). We will also study the minimum
spanning tree problem (which has a very easy visual algorithm for its solution), the
maximum flow problem, and the shortest path problem. The two latter problems
will be solved by the Excel Solver.

5.1 Assignment Problem
First, we present a small example of this type of problem, and then we will exam-
ine the general model.

5.1.1 Example: Assigning 3 Jobs to 3 Machines

Suppose that we have three jobs, and three machines on which these jobs will be
done. Each machine will do just one of the three jobs. All three machines are
capable of doing each job, but there are some differences in performance. We
can think of these differences in terms of cost (which could be time rather than

199
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dollars). Suppose that the costs (in tens of dollars) to assign each job (row) to each
machine (column) are as follows:

Machine
1 2 3

1 30 20 18
Job 2 17 40 21

3 25 32 28

If we merely wished the numerical answer to this little example, we could
easily find it by inspection. The minimum cost solution is to assign job 1 to
machine 2, assign job 2 to machine 1, and assign job 3 to machine 3, for a total
cost of 20+ 17+ 28 = 65 units of tens of dollars, i.e. $650. However, finding a
solution by inspection won’t be possible if we are trying to assign ten jobs to ten
machines. Therefore, we will build an algebraic model for the example, and this
will help us create a general algebraic model for a problem of any size.

It might be tempting the think of this problem as needing only three variables,
with each representing the machine number to which each of the three jobs should
be assigned. However, this approach doesn’t help us. Instead, we need to think
of each pair of job and machine. Should job 1 be assigned to machine 1? Should
job 1 be assigned to machine 2? Continuing in this manner, we obtain nine (three
times three) “yes or no” type questions. This leads us to formulate this model with
nine variables. For each, the “yes” or “no” is modeled with the numbers 1 and 0,
respectively. It is useful in a problem like this to have double-subscription on
the variable names. The first subscript number indicates the job, and the second
the machine. For example, X1,3 is used for the pair (job 1, machine 3). For this
variable, the binary choice is:

X1,3 =

{
1 if job 1 is assigned to machine 3
0 otherwise

}
It would be tedious to write out all nine variables this way. Instead of defining

each variable separately, the variable definitions can be written in one expression,
where we define the meaning of Xi j for all pairs (i, j):

Xi j =

{
1 if job i is assigned to machine j
0 otherwise

}
i = 1,2,3 j = 1,2,3

The reason for using the numbers 1 and 0 becomes clear when we write the
model. For example, if job 2 is assigned to machine 3 (i.e. X2,3 = 1), then the cost
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is 21(1) = 21. If job 2 is not assigned to machine 3 (i.e. X2,3 = 0), then the cost is
21(0) = 0. Hence, whether or not job 2 is assigned to machine 3, we incur a cost
of 21X2,3.

Hence the objective function is:

minimize 30X1,1+20X1,2+18X1,3+17X2,1+40X2,2+21X2,3+25X3,1+32X3,2+28X3,3

Every job must be assigned to a machine, hence for each job i one of Xi j’s will be
1 (and the other two will be 0), hence the sum will be 1:

X1,1 +X1,2 +X1,3 = 1
X2,1 +X2,2 +X2,3 = 1
X3,1 +X3,2 +X3,3 = 1

Every machine must have a job assigned to it, hence for each machine j one
of Xi j’s will be 1 (and the other two will be 0), hence the sum will be 1:

X1,1 +X2,1 +X3,1 = 1
X1,2 +X2,2 +X3,2 = 1
X1,3 +X2,3 +X3,3 = 1

Finally, the model ends not with the usual non-negativity restrictions, but in-
stead the fact that each variable must be 0 or 1 is noted. One way to write this
is:

all Xi j ∈ {0,1} .

In one sense this is a specialized type of linear programming problem, but it
seems to violate one of the assumptions of linear programming which requires
that all variables be continuous, rather than integer. However, it turns out that the
assignment problem is naturally integer. By this, we mean that the solution will
only contain 0/1 variables, even when these have not been specifically required.
Hence, any software for general linear programming will solve an assignment
problem.

The special structure of the formulation (all left-hand side coefficients are ei-
ther 0 or 1) has enabled researchers to find dedicated algorithms for the assign-
ment problem, which are computationally much more efficient than the simplex
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algorithm. The study of such algorithms is beyond the scope of this chapter. We
will use the Solver to solve this type of problem. Indeed, the rectangular array
paradigm of Excel is very useful for this type of problem, where the cost data is
in this format in the first place.

Since the cost data are in a 3 by 3 array, we can also use a 3 by 3 array for
the values of the variables. Note that the SUMPRODUCT function is happy with
this; here it’s an array times an array on a cell-by-cell basis, not the dot product of
one row with another row.1 Here is the setup in formula mode on the spreadsheet,
before entering the Solver:

1

2

3

4

5

6

7

8

9

10

11

12

A B C D E F G

Assignment Machine

Problem 1 2 3 sum

Job 1 =SUM(B3:D3) = 1

Job 2 =SUM(B4:D4) = 1

Job 3 =SUM(B5:D5) = 1

sum =SUM(B3:B5) =SUM(C3:C5) =SUM(D3:D5)

= = =

1 1 1

Total Cost 30 20 18

=SUMPRODUCT(B3:D5,B10:D12) 17 40 21

25 32 28

In the Solver we ask it to minimize A11 by changing variable cells B3:D5,
subject to the three constraints E3:E5 = G3:G5, and the three constraints B6:D6
= B8:D8. We click on the “Make unconstrained variables non-negative” box, and
ask for the problem to be solved using the “Simplex LP”. Solving the model we
obtain:

1In this example it’s B3 times B10 plus C3 times C10 and so on up to D3 times D12. This type
of product is not the same as matrix multiplication.
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1

2

3

4

5

6

7

8

9

10

11

12

A B C D E F G

Assignment Machine

Problem 1 2 3 sum

Job 1 0 1 0 1 = 1

Job 2 1 0 0 1 = 1

Job 3 0 0 1 1 = 1

sum 1 1 1

= = =

1 1 1

Total Cost 30 20 18

65 17 40 21

25 32 28

As we saw earlier, we see from the Solver output that the minimum cost so-
lution is to assign job 1 to machine 2, assign job 2 to machine 1, and job 3 to
machine 3, with a total cost of 65 units, i.e. $650.

5.1.2 Assigning n Jobs to n Machines

Now we consider the general assignment problem, in which there are n jobs to be
assigned to n machines, such that each machine does exactly one job, and the cost
of assigning job i to machine j is ci j. We define:

Xi j =

{
1 if job i is assigned to machine j
0 otherwise

}
i = 1,2, . . . ,n j = 1,2, . . . ,n

The objective function is:

minimize
n

∑
i=1

n

∑
j=1

ci jXi j

Each job must be assigned to a machine, therefore we need the following n con-
straints:

job i assigned to a machine
n

∑
j=1

Xi j = 1 i = 1,2, . . . ,n
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Each machine must have a job assigned to it, therefore we need the following n
constraints:

machine j is assigned a job
n

∑
i=1

Xi j = 1 j = 1,2, . . . ,n

Finally, we must have:
all Xi j ∈ {0,1} .

Just as the size can be generalized, so can the applications. Besides assigning
jobs to machines, we could have workers to jobs, trial judges to cases, manuscripts
to editors, and so on.

5.1.3 Special Cases
Impossible Assignment

If a particular job cannot be assigned to a particular machine, we could simply
add a constraint to disallow this assignment. However, if we want to keep the
structure of the model intact, an alternate way to accomplish this is to make the
cost coefficient for this pair very high. Aside from an assignment that must be
disallowed for technological reasons, we might wish to disallow an assignment
for another reason, such as conflict-of-interest. For example, we would not want
to assign a trial judge to a case in which his daughter was the accused.

Uneven Situation

Suppose that there are three jobs to be assigned to four machines, hence one ma-
chine will not have a job assigned to it. We can handle this in one of the following
two ways:

1. We can create a “dummy” job, which would have no cost of being assigned
to any machine. Now we assign four jobs (three real ones plus the dummy)
to the four machines, and we would then simply ignore the assignment of
the dummy. Dedicated algorithms for the assignment problem often assume
this “balanced” (i,e. the number of jobs equals the number of machines)
case.

2. There is no need for a “dummy” if we are using the Excel Solver, which
uses the simplex algorithm. The first set of constraints remain as equality
constraints, but the second set simply become ≤ constraints.
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5.2 Transportation Problem
The transportation problem involves sending supplies from origins to satisfy de-
mands at destinations so as to minimize the total cost of shipping. We begin with
an example of this problem, and then present the general formulation.

5.2.1 Transportation Example
A large manufacturer of heavy machinery in eastern Canada has three factories lo-
cated in Toronto, Montréal, and Halifax. Each factory will serve the local market
in which it is situated. In addition, each plant has the capacity to produce be-
yond its local market for markets in five other cities: London, Ottawa, Kingston,
Québec City and Fredericton. Since shipments from Toronto, Montréal, and Hali-
fax to the five other cities are made using palettes filled with the company’s prod-
uct, each unit of shipment is a loaded palette. The excess capacities in Toronto,
Montréal, and Halifax are 600, 400, and 150 loaded palettes respectively. The
requirements at London, Ottawa, Kingston, Québec City and Fredericton are 450,
350, 250, 150 and 100 loaded palettes, respectively.

The general problem is to distribute the required loaded palettes to each of the
markets such that the profit can be maximized. If the selling price in each of the
areas is the same, then the major profit factor would be the transportation cost.
Thus we only need to minimize the cost of transporting the loaded palettes. The
following costs (in hundreds of dollars) per loaded palette have been determined
for each of the routes.

Source Destination
London Ottawa Kingston Québec City Fredericton

Toronto 6 11 8 13 17
Montréal 12 9 8 7 10
Halifax 18 13 15 10 5

5.2.2 Model Formulation
An appropriate objective would be to minimize the cost of transporting the loaded
palettes from where they are to where they are needed. The only factor under the
control of the retailer is the number of loaded palettes to ship from each supply
centre to each marketing centre. The factors which constrain the decision makers
are the supply limits at each supply centre and the demands at each marketing
centre.
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In defining our decision variables, it is convenient to use double-subscription
notation. The decision variables are (using the word unit to mean a loaded palette):

Xi j = number of units shipped from source (supply) i to destination (demand) j

where i = 1, 2 and 3 represents Toronto, Montréal and Halifax, and j = 1, 2, 3, 4
and 5 represents London, Ottawa, Kingston, Québec City and Fredericton.

[In a small example like this, it would also be possible to define the variables
using a pair of letters: T L represents the number of units shipped from Toronto
to London, TO represents the number of units shipped from Toronto to Ottawa,
and so on, and finally HF represents the number of units shipped from Halifax to
Fredericton.]

The total cost of shipping the units (using the subscripted variables) can be
written as:

OFV = 6X1,1 + 11X1,2 + 8X1,3 + 13X1,4 + 17X1,5
+ 12X2,1 + 9X2,2 + 8X2,3 + 7X2,4 + 10X2,5
+ 18X3,1 + 13X3,2 + 15X3,3 + 10X3,4 + 5X3,5

We have two different sets of constraints, one associated with the supply re-
strictions, and the other associated with the demand restrictions.

A. Supply restrictions

Toronto X1,1 +X1,2 +X1,3 +X1,4 +X1,5 ≤ 600
Montréal X2,1 +X2,2 +X2,3 +X2,4 +X2,5 ≤ 400

Halifax X3,1 +X3,2 +X3,3 +X3,4 +X3,5 ≤ 350

B. Demand restrictions

London X1,1 +X2,1 +X3,1 ≥ 450
Ottawa X1,2 +X2,2 +X3,2 ≥ 350

Kingston X1,3 +X2,3 +X3,3 ≥ 250
Québec City X1,4 +X2,4 +X3,4 ≥ 150
Fredericton X1,5 +X2,5 +X3,5 ≥ 100

The total supply is 600+ 400+ 350 = 1350, and the total demand is 450+
350+250+150+100 = 1300. Since the total supply meets or exceeds the total
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demand (in this example the former exceeds the latter by 50 units), the model
will have a feasible solution. In summary, the linear optimization model for this
transportation problem is:

minimize 6X1,1 + 11X1,2 + 8X1,3 + 13X1,4 + 17X1,5
+ 12X2,1 + 9X2,2 + 8X2,3 + 7X2,4 + 10X2,5
+ 18X3,1 + 13X3,2 + 15X3,3 + 10X3,4 + 5X3,5

subject to

Toronto X1,1 +X1,2 +X1,3 +X1,4 +X1,5 ≤ 600
Montréal X2,1 +X2,2 +X2,3 +X2,4 +X2,5 ≤ 400
Halifax X3,1 +X3,2 +X3,3 +X3,4 +X3,5 ≤ 350
London X1,1 +X2,1 +X3,1 ≥ 450
Ottawa X1,2 +X2,2 +X3,2 ≥ 350
Kingston X1,3 +X2,3 +X3,3 ≥ 250
Québec City X1,4 +X2,4 +X3,4 ≥ 150
Fredericton X1,5 +X2,5 +X3,5 ≥ 100

non-negativity Xi j ≥ 0 i = 1,3; j = 1,5

5.2.3 General Model

In the general form of the model the parameters of the model are as follows. There
are m supply points, and n demand points. The supply at supply point i is si, and
the demand at demand point j is d j. In order for there to be a solution, we must
have:

m

∑
i=1

si ≥
n

∑
j=1

d j

We will assume that the si’s and the d j’s are positive integers. The cost to ship
one unit from supply point i to demand point j is ci j.

The unknowns of the model are the quantities to be shipped from each supply
point to each demand point. Hence, there are m×n decision variables, where Xi j
is the quantity to be shipped from supply point i to demand point j.

The general transportation model is as follows:
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minimize
m

∑
i=1

n

∑
j=1

ci jXi j

subject to

supplies
n

∑
j=1

Xi j ≤ si (i = 1, . . . ,m)

demands
m

∑
i=1

Xi j ≥ d j ( j = 1, . . . ,n)

Xi j ≥ 0
{

i = 1, . . . ,m
j = 1, . . . ,n

}

An important property holds as a result of our assumption that each si and
each d j is a positive integer. This property is that each Xi j will also be a non-
negative integer. The transportation problem is one of the few problems where the
integrality of the decision variables occurs in such a natural fashion.2

There was a time when all transportation problems had to have balanced sup-
ply and demand, which often required the creation of a dummy demand point to
absorb the difference between the total demand and the total supply of the original
model. This was done because the specialized algorithms which had been written
for the transportation problem assumed the balanced situation. However, this is
not needed by the simplex algorithm which the Excel Solver uses, hence we will
leave all such problems is the original unbalanced form.

5.2.4 Solution

Now we solve the example presented earlier. We use a rectangular array for the
cost coefficients (orange), and reserve a rectangular array for the values of the
variables (yellow). On Excel we begin with:

2In any problem, we can force the variables to be integer by declaring them to be int on the
Excel Solver. What we are saying here is that in the transportation problem we will obtain integer
variables even if we do not make this declaration.
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1

2

3

4

5

6

7

8

9

10

11

12

A B C D E F G H I

Transportation Model

London Ottawa Kingston  Quebec C. Fredericton sum

Toronto 0 <= 600

Montreal 0 <= 400

Halifax 0 <= 350

sum 0 0 0 0 0

>= >= >= >= >=

450 350 250 150 100

Total Cost 6 11 8 13 17

0 12 9 8 7 10

18 13 15 10 5

The following formulas were entered:

1. =SUM(B3:F3) in cell G3, copied to G3:G5.

2. =SUM(B3:B5) in cell B6, copied to B6:F6.

3. =SUMPRODUCT(B3:F5,B10:F12) in cell A11.

In the Solver we:

1. Set Objective A11.

2. Click on Min.

3. Make the Changing Variable Cells B3:F5.

4. Subject to the Constraints
G3:G5 ≤ I3:I5 and B6:F6 ≥ B8:F8.

5. Click on Make Unconstrained Variables Non-Negative.

6. Under Select a Solving Method we choose the Simplex LP.

Solving we obtain:
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1

2

3

4

5

6

7

8

9

10

11

12

A B C D E F G H I

Transportation Model

London Ottawa Kingston  Quebec C. Fredericton sum

Toronto 450 0 150 0 0 600 <= 600

Montreal 0 300 100 0 0 400 <= 400

Halifax 0 50 0 150 100 300 <= 350

sum 450 350 250 150 100

>= >= >= >= >=

450 350 250 150 100

Total Cost 6 11 8 13 17

10050 12 9 8 7 10

18 13 15 10 5

We see that in the optimal solution, from Toronto we send 450 units to London
and 150 to Kingston, from Montréal we send 300 units to Ottawa and 100 units
to Kingston, and from Halifax we send 50 units to Ottawa, 150 units to Québec
City, and 100 units to Fredericton. The unused capacity is 50 units; this occurs
at Halifax. The cost of the optimal solution is 10,050 hundreds of dollars, i.e.
$1,005,000.

5.2.5 A Modification to the Example

Suppose that something comes along to change this model. For example, suppose
that a fire at their Montréal location has reduced the capacity (in excess of the
demand locally) to only 50 units, a drop of 350 units. In response to this catas-
trophe, the company has decided to increase production in Halifax by operating
longer hours. Halifax’s capacity is now raised by 300 units from 350 to 650,
which combined with the 50 units of unused capacity at Halifax offsets the loss of
350 units at Montréal. The total supply is now 1300 units, which equals the total
demand. While this requires a major adjustment for the company, it only requires
a minor revision to the model. We simply change the numbers in cells I4 and I5 to
50 and 650, respectively. Doing this and clicking on OK on the Solver we obtain:
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1

2

3

4

5

6

7

8

9

10

11

12

A B C D E F G H I

Transportation Model

London Ottawa Kingston  Quebec C. Fredericton sum

Toronto 450 0 150 0 0 600 <= 600

Montreal 0 0 50 0 0 50 <= 50

Halifax 0 350 50 150 100 650 <= 650

sum 450 350 250 150 100

>= >= >= >= >=

450 350 250 150 100

Total Cost 6 11 8 13 17

11600 12 9 8 7 10

18 13 15 10 5

The total cost has increased to 11,600($100) = $1,160,000. This is to be ex-
pected, because now Halifax is serving places such as Ottawa, which is much
further away from its new point of supply of Halifax than it was to its previous
supply point of Montréal.

5.3 Transshipment Problem

A transshipment problem is an extension of the transportation problem, in which
one or more places can be both a supply point and a demand point. Suppose that
Montréal can receive supplies from both Toronto and Halifax. All these cities
are ports, so it might be possible to move items between these cities cheaply us-
ing ships. Let’s suppose that there’s a $200 per-unit cost between Toronto and
Montréal, and a $300 per-unit cost being Halifax and Montréal.

What flows out of Montréal is the same as before, i.e. X2,1 + X2,2 + X2,3 +
X2,4 +X2,5. The flow in is the production capacity at Montréal (400 before the
fire, 50 afterwards), plus the amounts received from Toronto and Halifax. We will
let T M represent the number of units shipped from Toronto to Montréal, and HM
represent the number of units shipped from Halifax to Montréal. In the post-fire
situation the flow balance at Montréal is:

X2,1 +X2,2 +X2,3 +X2,4 +X2,5 ≤ 50+T M+HM



212 CHAPTER 5. NETWORK MODELS

Hence the revised supply constraints are:3

Toronto X1,1 +X1,2 +X1,3 +X1,4 +X1,5 +T M ≤ 600
Montréal X2,1 +X2,2 +X2,3 +X2,4 +X2,5−T M−HM ≤ 50
Halifax X3,1 +X3,2 +X3,3 +X3,4 +X3,5 +HM ≤ 650

In modeling this situation in Excel, we need to add Montréal as a destination. We
will use the post-fire transportation spreadsheet, and add Montréal as column G.
In rows 10 to 12 of column G, the new costs of shipping from Toronto and Halifax
to Montréal must be entered. These figures are $200 and $300 respectively, but all
costs are entered in units of hundreds of dollars, so we put a 2 into cell G10 and a
3 into cell G12. We sum rows 3 to 5 of this column, putting =SUM(G3:G5) into
cell G6, but there is no constraint on this column. This sum will be T M +HM,
hence in the new column H, we need to put =SUM(B4:G4)-G6 into the cell in
the Montréal row (i.e. cell H4), which calculates the value of X2,1 +X2,2 +X2,3 +
X2,4 +X2,5− (T M+HM). In formula mode columns G, H, I, and J are now:

1
2
3
4
5
6
7
8
9
10
11
12

G H I J

Montreal sum
=SUM(B3:G3) <= 600
=SUM(B4:G4)‐G6 <= 50
=SUM(B5:G5) <= 650

=SUM(G3:G5)

2
0
3

In cell A11, we now include column G when calculating the cost:
=SUMPRODUCT(B3:G5,B10:G12).

In the Solver, things are similar to the transportation problem, but we now
need to compare columns H and J: H3:H5 ≤ J3:J5.

Solving, we obtain:

3Since the supply and demand are now balanced, all the constraints could be made equalities,
but it’s easier just to leave them as ≤ supply constraints and ≥ demand constraints.
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1
2
3
4
5
6
7
8
9
10
11
12

A B C D E F G H I J
Transshipment Model
London Ottawa Kingston  Quebec C. Fredericton Montreal sum

Toronto 450 0 150 0 0 0 600 <= 600
Montreal 0 350 100 0 0 0 50 <= 50
Halifax 0 0 0 150 100 400 650 <= 650
sum 450 350 250 150 100 400

>= >= >= >= >=
450 350 250 150 100

Total Cost 6 11 8 13 17 2
11050 12 9 8 7 10 0

18 13 15 10 5 3

We see that the cost has been reduced from 11,600 to 11,050 hundreds of dollars,
i.e. from $1,160,000 to $1,105,000.

In this example, transshipment to Montréal was possible from both Toronto
and Halifax. Had this not been so, for example if transshipment were possible
from Halifax but impossible from Toronto, then we would have needed to put in
a large cost coefficient (such as 9999) in the Toronto to Montreal cost cell (cell
G10) to prevent any flow from happening.

5.4 Networks
We are all familiar with the notion of a network in the sense of a television net-
work. More generally, a network consists of a set of places (called nodes) which
are connected together. Other examples of networks include:

(i) cities and roads

(ii) oil wells and pipelines

(iii) switching stations and telephone wires.

In this section, we will examine three network problems:

(a) The minimum spanning tree problem: How can the nodes be connected so
that the total construction cost is minimized? For this problem, an easy visual
algorithm is presented.
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(b) The maximum flow problem: In a network with capacity constraints, what
is the maximum flow between a given pair of nodes? This problem will be
solved using the Excel Solver.

(c) The shortest path problem: What is the shortest (or cheapest, or least time)
path through a network between a given pair of nodes? This problem will also
be solved using the Excel Solver.

It should be noted that the models seen so far in this chapter for the assignment,
transportation, and transshipment problems, are also network models. However,
they are more easily understood as applications in their own right instead of think-
ing of them as specialized networks.

5.4.1 Definition of Terms

In the above examples of networks, the cities, oil wells, switching stations or
activities are represented by “nodes,” which are drawn as circles or squares, with
the node identification number drawn in the middle.

5 means “node 5”

The roads, pipelines, telephone wires or events connecting the activities are
represented by “arcs,” which are straight or curved lines drawn between pairs of
nodes. Unidirectional flow (e.g. a one-way street) is shown by an arrowhead;
bidirectional flow is shown either by no arrowheads or by arrowheads at each end
of the arc.

-

� -

unidirectional arc

or bidirectional arc

There are two ways of identifying arcs.

1. One way is to give each arc a number which is referenced to a pair of nodes;
e.g. a database search shows that arc #152 goes from node 8 to node 14.

2. The other way is to give the arc two numbers, which are the node numbers
of the nodes connected by the arc. In the case of a unidirectional arc, the
origin node number is given first. The following diagram displays a directed
arc from node i to node j.
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i j-

arc i, j
node i node j

directed arc i, j

Sometimes, instead of having a bidirectional arc from i to j, there are two
unidirectional arcs: one from i to j, and the other from j to i. This is usually
done when there is some difference in the two directions. For example, because
of winds, it takes more time and fuel to fly a plane from Rome to Toronto than
from Toronto to Rome.

5.5 Minimum Spanning Tree Problem
Let us consider a town planning decision associated with building a new subdivi-
sion. Storm drains will be located at selected points within the subdivision and we
want to connect them to the existing system. We will let each of the storm drains
be represented by a node. The location of the drains (the nodes of the network)
is given exogenously; our problem is to choose the arcs of the network (drainage
pipes in this example) at minimum cost. If node i can be directly connected to
j , then there will be a construction cost ci j for connecting the two drains.

To satisfy the requirements of the town planners, we need to be able to connect
the nodes so that it is possible to go from any node to any other node (regardless
of how involved the route is), and to have the total construction cost minimized.
The set of arcs so constructed is referred to as the minimum spanning tree.

Other applications are:

(a) to build a road network to connect cities

(b) to build a network of pipelines to connect oil wells

(c) to build a network of cable to connect houses with a cable distribution centre.

Consider the following small example given in Figure 5.1.
There are five potential (bidirectional) arcs which can be used to connect all

four nodes. By inspection, the optimal solution (given in Figure 5.2) has a total
construction cost of 10 + 7 + 5 = 22. Note that the solution to this example
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Figure 5.1: A Network With Four Nodes
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Figure 5.2: Minimum Spanning Tree of the 4-Node Network

with four nodes contains three arcs. It is always true that a network with n nodes
network will have n−1 arcs in the minimum spanning tree.

Most examples are not as trivial as this one. To solve more complex examples
we use an algorithm written especially for finding the minimum spanning tree. We
present an example for which the solution is not immediately obvious, and then
solve it with a visual algorithm.

5.5.1 An Example With Seven Nodes

Consider the example given in Figure 5.3. The number beside the arc represents
what it would cost in hundreds of dollars to construct the link between the begin-
ning and ending nodes of the arc. At the outset none of these costs has occurred
– we seek the minimum spanning tree which will require that 7− 1 = 6 of these
links be constructed.
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Figure 5.3: A Network with Seven Nodes

Minimum Spanning Tree – Visual Algorithm

To use this approach we begin with the original network diagram. In practice,
all the work is done on this one diagram, though we shall show it with multiple
diagrams for pedagogical purposes.

Whatever node we begin with, we will obtain the same solution. Unless oth-
erwise stated, we will begin each application of this algorithm with node 1. This
algorithm proceeds myopically – what is amazing is that this myopic approach
does indeed obtain the optimal solution. We say that node 1 is connected, and that
at this moment the other nodes are unconnected. We proceed from this connected
node to all unconnected nodes that can be reached directly. In this example, these
are nodes 2, 3, and 4. From node 1 we must choose one of the following arcs:

1

2

3

4

@
@
@
@

�
�
�
�

18

27

51

It turns out that the best thing to do is to choose the arc with the lowest number
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(either representing the least cost, or the least distance). In this example this is arc
1,4 with a cost of 18. We then say that the ending node of this arc (node 4) is
connected, and this arc enters the solution. To show this, we darken the arc, and
show that this was added at iteration 1 by putting a 1 into a circle next to the added
arc. The diagram is now:

1

2

3

4

@
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@
@

@
@
@
@

@
@
@
@@

�
�
�
�

18

27

51

n1

At the outset of the second iteration, we have everything we have already, plus
we show the arcs which can be reached from the newly-added connected node.
These are arcs 4,3 and 4,6.
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4 6
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27

51

42
24

n1

We look at all the arcs which go from connected nodes to unconnected nodes,
and choose the cheapest. This is arc 4,6 with a cost of 24. We darken arc 4,6, and
show that this was added at the second iteration by placing a circled 2 next to this
added arc.
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Figure 5.4: 7- Node Minimum Spanning Tree: Visual Solution
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At each iteration, the user finds by inspection the least cost arc going from a
connected node to an unconnected node. Doing this for four more iterations we
obtain what is shown in Figure 5.4.

We see that the total cost is:

18+24+27+29+37+55 = 190

Since the units are in hundreds of dollars, the total cost of constructing the links
is $19,000.

The steps of the algorithm can be summarized as:

Step 1: Arbitrarily pick any node and designate that node as being con-
nected to the existing system.
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Step 2: For each connected node i which can directly reach unconnected
node j, determine the arc with the smallest ci j (break a tie for the
smallest ci j arbitrarily). This arc enters the problem solution, and the
ending node of this arc is now designated as being connected.

Step 3: If all nodes are connected then STOP. Otherwise, return to Step 2.

Minimum Spanning Tree – Further Comments

In using the preceding algorithm, we are seeing the network diagram. For a com-
puter to obtain the solution, we have store the information in matrix form.

There are three algorithms for the minimum spanning tree problem, which are
described at https://en.wikipedia.org/wiki/Minimum spanning tree. This article
provides links to the three algorithms, and gives an extensive list of references.

Unlike the other network problems in this chapter, we do not provide a way
of solving this problem in Excel using the Solver. Aside from this being a slow
approach for something which has very fast dedicated algorithms, the algebraic
formulation is very difficult. For our purposes, the visual algorithm will suffice.

5.6 The Maximum Flow Problem

A major problem in most large cities is how to manage increasingly heavy traffic
flows. Congestion on the road network can cause commuters to spend over an
hour to drive to or from work, which gives rise to many related costs. Thus we
would like to be able to determine the capacity of an existing network and ways
in which it can be expanded most efficiently. A complete analysis here is beyond
the scope of this book. Our problem is the maximum flow problem which can be
stated as desiring to maximize the flow (e.g. of cars, of cubic metres (m3) of oil
etc) between an origin node (“source”) and a destination node (“sink”), subject to
capacity constraints on the arcs of the network.

Each arc of the network has a capacity constraint, which might differ accord-
ing to direction. Suppose we have two pumping stations which we label as nodes
3 and 7. Between them is a pipeline, whose capacity is either 8,000 m3/day from
3 to 7, or 13,000 m3/day from 7 to 3.4 Using units of “thousands of m3/day” we
write the capacity constraints as follows:

4We stress that these capacity constraints are either-or, not both.

https://en.wikipedia.org/wiki/Minimum_spanning_tree


5.6. THE MAXIMUM FLOW PROBLEM 221

1

3

2

5

4

6
H
HHH

HH

��
��

�
�

��
��

�
�

H
HHHH

H

8

5

13

15

4

9

4

8

8 6

10 13

14

12

8

9

Figure 5.5: Maximal Flow Example – Arc Capacities

3 78 13

A unidirectional arc will have a capacity of 0 in one of the directions.

Consider the example given in Figure 5.5. We wish to know the maximum
flow from 1 to 6 .

5.6.1 The Algebraic Model

We let Xi j represent the number of units sent from node i to node j, defined only
for those pairs which have an arc between i and j. What we wish to determine is
the maximum flow from node 1 to node 6.

To do this, we create a “dummy” arc from node 6 to node 1 which receives
flow at 6 and sends it back to 1 over the dummy arc. This flow is X6,1. The
maximum flow from node 1 to node 6 must equal the return flow over the dummy
arc from 6 to 1. Hence, in this example, the objective is:

maximize X6,1

One set of constraints comes from the arc capacities. They are simple, but lengthy
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to write out:
X1,2 ≤ 13
X2,1 ≤ 15
X1,3 ≤ 8
X3,1 ≤ 5
X2,3 ≤ 9
X3,2 ≤ 4
X2,4 ≤ 10

Flow capacities X4,2 ≤ 13
between nodes X3,5 ≤ 8

X5,3 ≤ 6
X4,5 ≤ 8
X5,4 ≤ 4
X4,6 ≤ 8
X6,4 ≤ 9
X5,6 ≤ 14
X6,5 ≤ 12

There is no need to write a constraint on the dummy arc in the algebraic model.
However, we shall see that it is useful to include such a constraint in an Excel
model, and so we might want to include it here too. If used, the upper limit would
be set at a figure well beyond whatever the maximum flow could be, for example
1000 units:

X6,1 ≤ 1000

The other set of constraints comes from a need for the flow to balance at each
node. We must have the Flow In equal to the Flow Out, or equivalently:

Flow In−Flow Out = 0

Note that the flow on the dummy arc (X6,1 in this example) is included in the
“Flow In” at the beginning node, and is included in the “Flow Out” at the ending
node. Hence we need the following six constraints:

Node 1 X2,1 +X3,1 +X6,1−X1,2−X1,3 = 0
Node 2 X1,2 +X3,2 +X4,2−X2,1−X2,3−X2,4 = 0
Node 3 X1,3 +X2,3 +X5,3−X3,1−X3,2−X3,5 = 0
Node 4 X2,4 +X5,4 +X6,4−X4,2−X4,5−X4,6 = 0
Node 5 X3,5 +X4,5 +X6,5−X5,3−X5,4−X5,6 = 0
Node 6 X4,6 +X5,6−X6,4−X6,5−X6,1 = 0
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Also, we require that all variables be greater than or equal to 0. With all arc
capacities being integers, the values of the variables will also be integers.

5.6.2 Excel Model

We could solve the algebraic model in Excel by creating a model with 16 + 1 = 17
columns for each variable cell, one for each arc with non-zero capacity, and one
for the dummy arc. However, there is a much easier way to do this.

The arc capacity data was given in a picture (Figure 5.5), but equivalently it
could have been given in tabular form. If we have the picture, we can create a
table displaying the same information; if we have the information in a table, we
can create the picture. Each is an alternate way of stating the same information
given in the other form.

From the picture we could make the following table, inserting a 0 capacity for
the non-existent arcs, but putting a capacity of 1000 for the dummy arc between
nodes 6 and 1.

From \ To 1 2 3 4 5 6

1 0 13 8 0 0 0

2 15 0 9 10 0 0

3 5 4 0 0 8 0

4 0 13 0 0 8 8

5 0 0 6 4 0 14

6 1000 0 0 9 12 0

The reason why we are using an artificially-created capacity for the dummy
arc in the Excel model is that it’s easier to write the arc capacity constraints this
way, as will be demonstrated later. The advantage of using a table is that it’s very
Excel-friendly; tables use rows and columns, and so does Excel.

Though we don’t have 6× 6 = 36 pieces of data, the 6 by 6 array is easier
to use than to try to deal with 17 pieces of data separately. When its comes to
the variables associated with these 17 pieces of data (capacities), it is again easier
to use a 6 by 6 array, but we need to recognize that many of the cells do not
represent the defined variables. We therefore reserve a 6 by 6 space in Excel
for the variables, but yellow highlighting is only used for the cells representing
defined variables.

Here is the initial setup for the Excel model:
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1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

A B C D E F G H

Flows Between Nodes

From \ To 1 2 3 4 5 6 Out

1 0

2 0

3 0

4 0

5 0

6 0

In 0 0 0 0 0 0

Capacities Between Nodes

From \ To 1 2 3 4 5 6 Flow

1 0 13 8 0 0 0 0

2 15 0 9 10 0 0

3 5 4 0 0 8 0

4 0 13 0 0 8 8

5 0 0 6 4 0 14

6 1000 0 0 9 12 0

In column H, we sum the flows coming out of each node listed in column A,
In row 9, we sum the flows going into each node listed in row 2. Though we only
need to sum the cells highlighted in yellow, it’s easier to sum them all (the other
cells will all contain zeroes). Hence in cell H3 we write =SUM(B3:G3), and
copy this into the range H3:H8. In cell B9 we write =SUM(B3:B8), and copy
this into the range B9:G9.

Though we only wish to maximize X6,1, we cannot simply maximize cell B8,
as Excel won’t allow a variable cell to also be an objective cell. We need to create
a dedicated objective cell; we use cell H12 for this purpose, with =B8 entered into
this cell.

Entering the Variable Cells and Constraints on the Solver

There are two approaches for entering the variable cells and the constraints on
the Solver. One way is easy; the other way minimizes the amount of computing
resources required to solve the problem.

The Easy Way One approach is:



5.6. THE MAXIMUM FLOW PROBLEM 225

1. Define the entire range B3:G8 as variable cells.

2. Enter the capacity constraints as B3:G8<=B12:G17.

3. Enter the node balance constraints as H3:H8=B9:G9.

4. Declare all variables to be non-negative. (We do not need to declare the
variables to be integer, maximum flow problems are naturally integer.)

Note that one of the constraints entered in operation 2 is for the capacity on the
dummy, which is X6,1 ≤ 1000.

Another Way (Optional) In this approach, both items 3 and 4 are as above, but
1 and/or 2 are modified to save on computer resources.

In 1, the “Easy Way” defines 6(6) = 36 variables, but we only need 17. Defin-
ing all 36 is easy, because there is only one range to enter, so we might as well
do it this way given that this example is small. However, it would be wasteful of
computing resources for larger problems. The number of defined variables can be
made lower by going to each range of cells highlighted in yellow, and entering
each separately. The ranges in this example are:
C3:D3,B4,D4:E4,B5:C5,F5,C6,F6:G6,D7:E7,G7,B8,E8:F8.

In 2, the “Easy Way” defines 6(6) = 36 capacity constraints, but we only need
16 of them (the dummy can be omitted). Entering contiguous constraints where
possible, we will have to use the “Add Constraint” ten times. These entries are:
C3:D3<=C12:D12, B4<=B13, D4:E4<=D13:E13, B5:C5<=B14:C14,
F5<=F14, C6<=C15, F6:G6<=F15:G15, D7:E7<=D16:E16, G7<=G16,
and E8:F8<=E17:F17. Note that with this approach, since no constraint is
entered for the dummy in cell B8, it doesn’t matter what number we put into cell
B17. A variant to this approach would add B8<=B17, in which case we would
need the 1000 (or other suitable number) in cell B17.

Solution

Solving the model we obtain:
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1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

A B C D E F G H

Flows Between Nodes

From \ To 1 2 3 4 5 6 Out

1 0 10 8 0 0 0 18

2 0 0 0 10 0 0 10

3 0 0 0 0 8 0 8

4 0 0 0 0 6 4 10

5 0 0 0 0 0 14 14

6 18 0 0 0 0 0 18

In 18 10 8 10 14 18

Capacities Between Nodes

From \ To 1 2 3 4 5 6 Flow

1 0 13 8 0 0 0 18

2 15 0 9 10 0 0

3 5 4 0 0 8 0

4 0 13 0 0 8 8

5 0 0 6 4 0 14

6 1000 0 0 9 12 0

We see that at most 18 units can be shipped from node 1 to node 6. If we wish
to find the maximum flow on this network between a different pair of nodes, not
much work needs to be done. We would have a new dummy arc replacing the old
one, and the changing cells would need to have the new dummy arc cell added,
and the old one deleted.

More information about the maximum flow problem can be found at:
https://en.wikipedia.org/wiki/Maximum flow problem.

5.7 The Shortest Path Problem
There are many situations in which it is important to be able to reach certain
locations at a minimum cost or minimum time. Some classic situations would
be firefighters responding to an alarm or an ambulance responding to a traffic
accident. For such situations it is important to know ahead of time what is the
fastest route between the base and where emergencies occur.

Let us consider the network given in Figure 5.6 where the number written next
to each arc represents the distance5 in metres of that arc.

5Or the cost or time to travel on that arc.

https://en.wikipedia.org/wiki/Maximum_flow_problem
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Figure 5.6: Data for the Shortest Path Example

Suppose that we want to know the shortest path from 1 to 7 . Obviously, for
such a small example it is a trivial matter to find the optimal solution, which is 1
→ 4 → 6 → 7 . However, we want an efficient solution procedure which can
solve problems of any size.

5.7.1 LP Model and Excel Solution

Each arc in the network is either part or not part of the shortest path, so we define:

Xi j =

{
1 if arc i, j is part of the shortest path
0 otherwise

}
all defined arcs i, j

The objective is to minimize the total distance travelled on the path from the be-
ginning to the end:

minimize 40X1,2 +58X1,3 +30X1,4 +40X2,1 +12X2,3 +70X2,5 +58X3,1 +12X3,2+
16X3,4 +55X3,5 +25X3,6 +65X3,7 +30X4,1 +16X4,3 +20X4,6 +70X5,2+
55X5,3 +15X5,7 +25X6,3 +20X6,4 +35X6,7 +65X7,3 +15X7,5 +35X7,6

If we send one unit from the beginning node to the ending node (in this exam-
ple, these are nodes 1 and 7 respectively) then the net flow at each node (i.e. the
total flow in minus the total flow out) must be −1 at the beginning, 1 at the end,
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and 0 at every other node. Hence the constraints are:

Beginning at Node 1 X2,1 +X3,1 +X4,1−X1,2−X1,3−X1,4 = −1
Node 2 X1,2 +X3,2 +X5,2−X2,1−X2,3−X2,5 = 0
Node 3 X1,3 +X2,3 +X4,3 +X5,3 +X6,3 +X7,3

−X3,1−X3,2−X3,4−X3,5−X3,6−X3,7 = 0
Node 4 X1,4 +X3,4 +X6,4−X4,1−X4,3−X4,6 = 0
Node 5 X2,5 +X3,5 +X7,5−X5,2−X5,3−X5,7 = 0
Node 6 X3,6 +X4,6 +X7,6−X6,3−X6,4−X6,7 = 0

Ending at Node 7 X3,7 +X5,7 +X6,7−X7,3−X7,5−X7,6 = 1

Putting this onto Excel, we use square arrays for the variables, and for the
distances. For the benefit of readability only, node 1 is green in column A and
node 7 is green in row 2, indicating that these are the beginning and ending nodes.
On the main diagonal of the distance matrix, all the numbers are zeroes. Off the
main diagonal, the actual distance is used for all arcs that are defined, such as arc
1,3 for which the distance is 40 metres. For the undefined arcs, such as 1,5, the
“dummy” distance of 9999 metres is used. This high number acts as a penalty
cost which will prevent the arc from being selected for the shortest path, because
the distance is prohibitive. In the picture which follows, the variable cells are in
the range B3:H9. This range contains 49 cells, but only the ones highlighted in
yellow, which represent defined arcs, can form part of the solution. The rows are
summed in column I using =SUM(B3:H3) in cell I3, which is copied into the
range I3:I9. The columns are summed in row 10, using =SUM(B3:B9) in cell
B10, which is copied into the range B10:H10. The challenge is to find the correct
formulas for the Net Flow in column J. Here are two ways to do this:

1. The slow way is to manually enter a formula in each cell in the range J3:J9.
The Net Flow is the Flow In − the Flow Out. Hence we put =B10-I3 in cell
J3, =C10-I4 in cell J4, and so on, finally putting =H10-I9 in cell J9.

2. The faster way requires a knowledge of Excel’s TRANSPOSE function.
This can be used to rotate the horizontal range B10:H10 by 90 degrees
clockwise. This transposed row therefore becomes a column, and now the
column I3:I9 can be subtracted from it.

However, using this function is more complicated than using most Excel
functions.

• First we need to click on cell J3 and then drag the mouse down to cell
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J9; this creates a blank cell in J3 but all the other cells in this range
will be in grey or black.

• Secondly, into cell J3 we enter the formula =TRANSPOSE(B10:H10)-
I3:I9.

• Thirdly, we must press the Control key (and keep it held down), then
the Shift key (and keep it held down), and then finally press the Enter
key.

Although only the cells in yellow are variable cells, things are made easier if we
use the entire range B3:H9.6 In cell J14, the objective function is computed by
using the SUMPRODUCT function to multiply the cells in B3:H9 by the corre-
sponding cells in the range B13:H19. This is possible because of the 9999 penalty
costs which will prevent the non-variable cells from being chosen.

We use the Solver to minimize cell J14, by changing variable cells B3:H9,
subject to J3:J9 = L3:L9.

6Alternatively, we could define only the yellow cells to be the changing variable cells. How-
ever, it takes longer to do it this way.
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1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

A B C D E F G H I J K L

Flows Between Nodes Net

From \ To 1 2 3 4 5 6 7 Out Flow RHS

1 0 0 0 1 0 0 0 1 ‐1 = ‐1

2 0 0 0 0 0 0 0 0 0 = 0

3 0 0 0 0 0 0 0 0 0 = 0

4 0 0 0 0 0 1 0 1 0 = 0

5 0 0 0 0 0 0 0 0 0 = 0

6 0 0 0 0 0 0 1 1 0 = 0

7 0 0 0 0 0 0 0 0 1 = 1

In 0 0 0 1 0 1 1

Distances (in metres) Between Nodes

From \ To 1 2 3 4 5 6 7 Shortest

1 0 40 58 30 9999 9999 9999 Distance

2 40 0 12 9999 70 9999 9999 85

3 58 12 0 16 55 25 65

4 30 9999 16 0 9999 20 9999

5 9999 70 55 9999 0 9999 15

6 9999 9999 25 20 9999 0 35

7 9999 9999 65 9999 15 35 0

We see that the shortest path has a distance of 85 metres. The shortest path
itself is found by following all the variable cells which contain the number 1. The
shortest path is seen to be 1 → 4 → 6 → 7 .

Having found the shortest path between nodes 1 and 7, if we now wish to find
the shortest path between a different pair of nodes, not much work needs to be
done on the user’s part. Suppose that we wish to know the shortest path between
nodes 4 and 5. There is no change to the objective function. In the constraints,
node 4 rather than node 1 has a −1 on the right-hand side, and node 5 rather than
node 7 has a 1 on the right-hand side.
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Node 1 X2,1 +X3,1 +X4,1−X1,2−X1,3−X1,4 = 0
Node 2 X1,2 +X3,2 +X5,2−X2,1−X2,3−X2,5 = 0
Node 3 X1,3 +X2,3 +X4,3 +X5,3 +X6,3 +X7,3

−X3,1−X3,2−X3,4−X3,5−X3,6−X3,7 = 0
Beginning at Node 4 X1,4 +X3,4 +X6,4−X4,1−X4,3−X4,6 = −1

Ending at Node 5 X2,5 +X3,5 +X7,5−X5,2−X5,3−X5,7 = 1
Node 6 X3,6 +X4,6 +X7,6−X6,3−X6,4−X6,7 = 0
Node 7 X3,7 +X5,7 +X6,7−X7,3−X7,5−X7,6 = 0

On the Excel file, node 4 is green in column A and node 5 is green in row
2, indicating that these are the new beginning and ending nodes. Of course, the
colouring is just a label for the user; Excel understands that the model has changed
by altering column L. The −1 now goes in cell L6, and the 1 is placed in cell L7.
Re-solving the model, we obtain:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

A B C D E F G H I J K L

Flows Between Nodes Net

From \ To 1 2 3 4 5 6 7 Out Flow RHS

1 0 0 0 0 0 0 0 0 0 = 0

2 0 0 0 0 0 0 0 0 0 = 0

3 0 0 0 0 0 0 0 0 0 = 0

4 0 0 0 0 0 1 0 1 ‐1 = ‐1

5 0 0 0 0 0 0 0 0 1 = 1

6 0 0 0 0 0 0 1 1 0 = 0

7 0 0 0 0 1 0 0 1 0 = 0

In 0 0 0 0 1 1 1

Distances (in metres) Between Nodes

From \ To 1 2 3 4 5 6 7 Shortest

1 0 40 58 30 9999 9999 9999 Distance

2 40 0 12 9999 70 9999 9999 70

3 58 12 0 16 55 25 65

4 30 9999 16 0 9999 20 9999

5 9999 70 55 9999 0 9999 15

6 9999 9999 25 20 9999 0 35

7 9999 9999 65 9999 15 35 0
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The distance along the shortest path is 70 metres, and the path is 4 → 6 → 7
→ 5 .

5.8 Summary
This chapter presented several types of network problems, though the first three,
the assignment, transportation, and transshipment problems, were presented with-
out reference to the underlying network structure. In the assignment problem we
seek the minimum cost of assigning n items of one type to n items of another. In
the transportation problem, we seek to minimize the cost of sending units from
supply points to points of demand. The transshipment problem is a variant of
the transportation problem, in which some points may be both origins and desti-
nations. Though specialized algorithms exist for these three problems, all were
solved here as linear programming models using the Excel Solver.

We then introduced the concept of a network, which consists of nodes and arcs,
and presented three network problems – the minimum spanning tree problem, the
maximal flow problem, and the shortest path problem. The minimum spanning
problem is that of connecting (directly or indirectly) each node with each other
node at minimum cost. We presented a simple visual algorithm for this problem.
In the maximum flow problem, some or all of the arcs have capacity constraints.
Given these constraints, we wish to know the upper limit to the quantity which
can be shipped between a given pair of nodes. We formulated this problem al-
gebraically, and solved it using Excel. In the shortest path problem the physical
network of nodes and arcs is already in place, and we seek the shortest (distance,
cost, or time) path from one given node to another. This was modelled using linear
programming and then solved using the Excel Solver.
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5.9 Problems for Student Completion

5.9.1 Assignment Problem
Chess matches are most interesting when the two players are approximately equal
in ability. There are eight players from two teams, whose scores based on past
performance are: Team 1 – 1600, 1825, 1670, and 1710; Team 2 – 1920, 1750,
1660, and 1790. For the first round, the tournament organizers want to see close
match-ups.

(a) Formulate an assignment model for deciding the players for the four matches.

(b) Solve the problem using the Excel Solver.

5.9.2 Transportation/Transshipment Problem
A company makes smart telephones at facilities in Waterloo (Canada), Cambridge
(England), and Mumbai (India). These plants can make 1200, 900, and 2400 tele-
phones per week beyond the demand in the “local” markets of Canada/USA, Eu-
rope, and Western Asia respectively. All three plants can ship to markets else-
where: Latin America, Africa, and Eastern Asia. The demands per week in
these three markets are for 500, 1400, and 2500 telephones per week respectively.
Phones are shipped in boxes of 100. The shipping costs per box are as follows:

From/To Latin America Africa Eastern Asia
Waterloo 200 340 270
Cambridge 290 250 310
Mumbai 300 240 250

(a) Formulate a model and solve using Excel to determine how much should be
shipped from the factories to the markets.

(b) Now suppose that phones can be shipped from Waterloo to Cambridge at a
cost of $40 per box. Formulate and solve the new model.

5.9.3 Minimum Spanning Tree
A cable TV company needs to run some wires to serve six customers who are
located a considerable distance apart. The following symmetric table gives the
cost (in tens of dollars) of running a direct cable between customers (an impossible
or prohibitively costly connection is indicated as –):
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From/To 1 2 3 4 5 6
1 – 39 41 62 40 –
2 39 – 50 38 60 65
3 41 50 – 35 36 61
4 62 38 35 – 32 48
5 40 60 36 32 – 46
6 – 65 61 48 46 –

(a) Draw a picture of the six customers, showing each potential connection with
its cost written next to the link.

(b) On this picture, beginning with customer 1, use the visual algorithm to find
the minimum cost solution.

5.9.4 Maximal Flow Problem

The following table gives the maximum flow between nodes which are physically
connected:

From/To 1 2 3 4 5 6
1 – 12 14 – 16 –
2 – – 4 15 12 –
3 12 11 – 14 19 4
4 – 21 – – 16 9
5 – – 11 14 – 22
6 – – – 13 18 –

We wish to determine the maximum flow through the network from node 2 to
node 5.

(a) Draw a picture of this situation, including the dummy arc.

(b) Formulate this problem as a linear optimization model.

(c) Solve the problem in Excel.
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5.9.5 Shortest Path Problem
The following picture gives highway distances in kilometres between a set of
cities. A hurricane has washed out the road that used to exist between cities 3
and 6, and so it is not shown on the map.
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(a) Formulate an algebraic model for determining the shortest path between cities
2 and 6.

(b) Use the Excel Solver to determine the solution.
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Chapter 6

Integer Models

In Chapter 3 we noted that some of the variables in some of the models had to be
integer. Such variables were indicated either by stating that they must be integer
(in addition to being ≥ 0), or by stating that they must be ∈ {0,1,2, . . .}. Then, to
solve such models, we declared them to be int in the Excel Solver. We explore the
issue of integer variables further in this chapter, and in particular we examine:

1. The graphical solution of two-variable integer models.

2. The formulation of models in which some of the variables must be either
0 or 1, i.e. ∈ {0,1}, and the bin declaration in the Solver for solving such
models.

6.1 Introduction

6.1.1 Removing the Assumption of Real-Numbered Variables
One of the four assumptions of linear optimization models is that the each vari-
able must be allowed to be a real number (e.g. 5.0, 6.11111... or 8.3) rather than
be required to be an integer. However, there are many situations where this as-
sumption is not valid. In such cases, unless the linear solution is naturally integer,
the user is unsure how the decision variables should be treated. For example, if a
linear model recommends that a firm purchase 7.92 trucks, should this be rounded
to 8 (the nearest integer), rounded down to 7, or some other solution? Indeed,
there may be no feasible solution when the restriction of integrality is added to
the model. In addition to this type of situation, managers often wish to model

237
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either/or type decisions, which are typically represented by a variable which must
be either 0 or 1.

In this chapter we examine what happens when the assumption of real-numbered
variables is removed. With this assumption gone, we are in a situation where some
or all of the variables of a model are restricted to the set of integers.1 If some, but
not all, the variables are required to be integer then we are dealing with a mixed
integer model. If all the variables are required to be integer then we have a pure
integer model.

As far as the formulation is concerned, the easiest situation to handle is where
a variable, which arises naturally out of a formulation, must be integer rather than
continuous. In such a situation, the non-negativity restriction is merely replaced
by a restriction that this variable must be in the set of positive integers.

For example, suppose that H7 represents the number of workers to be hired in
month 7. The formulation proceeds as in the linear case, except that at the end,
instead of writing H7 ≥ 0, we write2

H7 ∈ {0,1,2,3, . . .}

If the number of workers to be hired is restricted to say 20, then H7 ≤ 20 is a
constraint; we do not need to end the set of integers at 20.

6.1.2 Naturally Integer Solutions and Rounding
There are some integer models which, when solved as if they were linear models,
give a solution which obeys the integrality restrictions. Such models are said to be
naturally integer. Important cases of this are the assignment and transportation
problems. Problems which have left hand side coefficients of−1, 0, or 1, and right
hand side coefficients which are integers, are often naturally integer, but these
conditions are neither necessary nor sufficient. In general, models with arbitrary
structure are highly unlikely to be naturally integer.

For problems which are not naturally integer, we must proceed further. For
some problems, it may not be necessary for all practical purposes to try to find the
optimal solution. In a model in which the variables have a high numerical value,
for example X1 = 732.91, the optimal integer value for this variable might well

1Or a finite subset of the set of integers. There is no loss in generality in excluding the pos-
sibility of discrete fractional values, since by a transposition of variables we can always create
integer-valued variables.

2This is read as “H7 is in the set of numbers 0, 1, 2, and so on.”
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be X∗1 = 732 or 733. Even if neither of these is optimal, if one of the solutions
is feasible then it may be nearly optimal. By “nearly”, we mean that the OFV is
near its optimal value. Any solution so obtained should of course be checked for
feasibility (i.e. we must verify that it satisfies the constraints.)

Rounding a linear solution to obtain an integer solution is an example of a
heuristic. A heuristic is an approach for solving a problem which hopefully gives
a good solution but does not necessarily give an optimal solution. When using
a heuristic it is desirable to know a bound for the gap between it and the opti-
mal solution. For example, suppose that we solve a maximization problem by
ignoring the integrality restrictions and we find that the optimal OFV (linear) is
$746,831.29. Suppose now that we round this solution to obtain integer values and
we find a feasible solution whose OFV is $746,688.10. For the optimal solution
to the integer model it follows that

$746,688.10≤ OFV∗ ≤ $746,831.29

Hence the heuristic is no worse than $143.19 below the optimum. It is knowing
this sort of information that can give a decision maker confidence in the recom-
mendation, even though he or she is aware that the solution is not guaranteed to
be optimal.

Certainly, the heuristic of rounding should be avoided in any of the following
three situations:

• the rounded solution is not feasible

• the percentage of change involved with rounding is large (e.g. rounding 2.1
to 2 is almost a 5% drop)

• any time the exact optimal solution must be obtained.

In any of these situations, an algorithm which handles the integrality restrictions
is required. One such general approach is the branch-and-bound algorithm which
is described in Appendix C beginning on page 492. Briefly, the branch and bound
algorithm solves a set of sub-problems, each of which is a linear model solvable
by the simplex algorithm. Whenever some of the variables are required to be
integer, the sensitivity analysis presented earlier is not valid. This algorithm is
built-in to the Solver in Excel, and it also available in many dedicated software
packages for linear and integer programming.
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6.1.3 Solution by Computer
A spreadsheet solver can be used to solve integer optimization models. There
are separate declarations for general integer variables (∈ {0,1,2,3, . . .}), and 0/1
integer variables (∈ {0,1}).

As first explained in the telephone operator problem of Chapter 3, the proce-
dure in the Excel Solver for declaring variables to be general integer variables, i.e.
they are ∈ {. . . , − 3,−2,−1,0,1,2, . . .} is given below. If the “Make Uncon-
strained Variables Non-Negative” box is ticked, then the joint effect is to declare
the variables to be positive integers, i.e. they are ∈ {0,1,2,3, . . .}.

1. Open the Solver, and click on “Add”.

2. The “Add Constraint” dialog box appears, with a blinker in the space below
“Cell Reference:”.

3. Use the mouse to highlight the variable cells. The range with dollar signs
will appear in the space.

4. In the middle where the “<=” appears, click on the down arrow to the right,
and then click on “int”.

5. The “<=” will be replaced by “int”, and “integer” will appear in the space
to the right.

6. Click on “OK”.

7. In the “Solver Parameters” dialog box, range = integer will appear in
the “Subject to the Constraints” section (where the cell references for the
variable cells are displayed for range).

8. Click on the Solve button.

Also, a cell (or range of cells) can be declared as binary, meaning that the only
possible values are 0 or 1. Similar to the above, such declarations are made under
Solver in the Add constraint dialog box, by selecting bin in the middle section.

6.2 Models with Two General Integer Variables
As with the linear case, models with just two integer variables can be solved
graphically. Some examples follow.
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6.2.1 Loading Boxes onto a Cargo Plane

Here we consider the example of loading boxes onto a cargo plane which we saw
at the end of Chapter 1.

Description

Two types of big boxes are about to be loaded onto a small cargo
plane. A Type 1 box has a volume of 2.9 cubic metres (m3), and a
mass of 470 kilograms (kg), while a Type 2 box has a volume of 1.8
m3 and a mass of 530 kg. There are six Type 1 boxes and eight Type 2
boxes waiting to be loaded. There is only one cargo plane, and it has a
volume capacity of 15 m3 and a mass capacity of 3600 kg. Obviously,
not all the boxes can be put onto the plane, therefore suppose that the
objective is to maximize the value of the load. We will consider the
following three situations: (i) both type of boxes are worth $400 each;
(ii) a Type 1 box is worth $600, and a Type 2 box is worth $250; and
(iii) a Type 1 box is worth $300, and a Type 2 box is worth $750.

Back then, we used an enumerative method to find all potential solutions, and then
evaluated each of these to find the optimal ones. Now, we will formulate and solve
this problem using integer optimization.

Formulation

We need to determine how many boxes of each type are carried on the plane, so
we define:

X1 = the number of Type 1 boxes carried on the plane
X2 = the number of Type 2 boxes carried on the plane

There are three cases of profit data. Each gives rise to a different objective func-
tion:

(i) maximize 400X1 +400X2

(ii) maximize 600X1 +250X2

(iii) maximize 300X1 +750X2
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There is a constraint for the volume capacity of the plane. By now it should be
easy to write this constraint:

Volume 2.9X1 +1.8X2 ≤ 15

Next, there is a constraint for the mass capacity of the plane:

Mass 470X1 +530X2 ≤ 3600

The plane cannot carry more boxes than are available to be carried, therefore we
have two more constraints:

Type 1 X1 ≤ 6

and
Type 2 X2 ≤ 8

In this example, we have not only the non-negativity restrictions, but also the
requirement that both variables must be integer. The complete formulation is
therefore:

X1 = the number of Type 1 boxes carried on the plane
X2 = the number of Type 2 boxes carried on the plane

One of:
(i) maximize 400X1 + 400X2

(ii) maximize 600X1 + 250X2
(iii) maximize 300X1 + 750X2

subject to

Volume 2.9X1 + 1.8X2 ≤ 15
Mass 470X1 + 530X2 ≤ 3600

Type 1 X1 ≤ 6
Type 2 X2 ≤ 8

non-negativity X1 , X2 ≥ 0
integer X1 , X2

We begin as always by making a grid and plotting the boundaries of the con-
straints. Although the last two constraints tell us that the optimal solution must be
contained within a 6 by 8 grid, we will see that a slightly larger 8 by 9 grid allows
us to show all of the volume and mass constraints.
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The boundary of the volume constraint is:

2.9X1 +1.8X2 = 15

Setting X1 = 0 makes 1.8X2 = 15, and hence X2 ≈ 8.333. Setting X2 = 0 makes
2.9X1 = 15, and hence X1 ≈ 5.172.

The boundary of the mass constraint is:

470X1 +530X2 = 3600

Setting X1 = 0 makes 530X2 = 3600, and hence X2≈ 6.792. Setting X2 = 0 makes
470X1 = 3600, and hence X1 ≈ 7.660.

The Type 1 constraint’s boundary is a vertical line through 6, and the boundary
of the Type 2 constraint is a horizontal line through 8.

In summary we have:

Constraint First Point Second Point
Volume (0,8.333) (5.172,0)

Mass (0,6.792) (7.660,0)
Type 1 X1 = 6 vertical
Type 2 X2 = 8 horizontal

All the arrows are easy; the origin is true for every constraint, so every arrow
points toward the origin.

These four constraints, along with their arrows and word descriptions, are
shown in Figure 6.1.

We can now fill-in with colour the region in which all four constraints and the
two non-negativity restrictions are true. This region is shown in gold in Figure 6.2.

Because the variables must be integer, only those points in the coloured area
which represent integer values for both variables are feasible.3 Finding all these
points, which we represent as dots, is fairly easy except when a point is very near
one of the constraint boundaries. In this example, the points (1,6), (2,5) are near
the boundary of the mass constraint, and the point (4,2) is near the boundary of
the volume constraint. We can test these contentious points by substituting the
values into the appropriate constraint. For example, for the point (1,6):

470(1)+530(6) = 470+3180
= 3650
6≤ 3600

3If X1 were integer, but X2 not integer, then we would have a set of feasible vertical lines. If X2
were integer, but X1 not integer, then we would have a set of feasible horizontal lines.
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Figure 6.1: Cargo Plane Problem – Constraints
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Figure 6.2: Cargo Plane Problem – Non-Integer Region
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Hence the point (1,6) is infeasible, and is therefore excluded from consideration.
On the other hand, for the point (2,5) we obtain:

470(2)+530(5) = 940+2650
= 3590
≤ 3600

√

Therefore, the point (2,5) is feasible. Finally, for the point (4,2) we use the volume
constraint:

2.9(4)+1.8(2) = 11.6+3.6
= 15.2
6≤ 15

We see that the point (4,2) is infeasible, and it is therefore excluded. We are left
with 26 feasible points, which are shown in Figure 6.3.

Beginning with the first of the three objective functions, we seek to maximize
400X1+400X2. The shortcut produces points which are off the graph, but dividing
by 100 gives the points 4 on the vertical axis and 4 on the horizontal axis. These
are connected to form the first of three trial lines. We then move the rolling ruler,
stopping not at the corner of the volume and mass constraints (because this point
is infeasible), but instead at the integer solution (2,5). This is shown in Figure 6.4.

The optimal objective function value is:

$400(2)+$400(5) = $2800

If an integer solution had not been required, we would have obtained a solution at
the corner of the volume and mass constraints. By using linear algebra we would
have found X∗1 ≈ 2.12735, X∗2 ≈ 4.90593, and OFV∗ ≈ $2813.31. Since we do
require integer values we have instead X∗1 = 2, X∗2 = 5, and OFV∗ = $2800.00.
By imposing the requirement that the variables be integer, we have impaired the
objective function value by $13.31. This will always be true – for models which
are not naturally integer, adding a requirement that the variables must be integers
will impair (i.e. lower for a maximization model, higher for a minimization model)
the objective function value.

Using the same diagram we draw the trial and optimal isovalue lines for situ-
ations (ii) (in green) and (iii) (in blue). As before, in order to obtain the intercepts
on the axes for the two trial lines, the objective function coefficients were divided
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by 100. All this is shown in Figure 6.5. We identify the optimal solution for case
(ii) as (5,0), i.e. five boxes of Type 1 only, the OFV is $600(5)+$250(0) = $3000.
The optimal solution for case (iii) is (0,6), i.e. six boxes of Type 2 only, the OFV
is $300(0)+ $750(6) = $4500. In summary we have the recommendation given
in the following table:

Situation Profit per Box Optimal Load Total
Type 1 Type 2 Type 1 Type 2 Profit

(i) 400 400 2 5 $2800
(ii) 600 250 5 0 $3000
(iii) 300 750 0 6 $4500

6.2.2 A Pure Integer Example with Negative LHS Coefficients
Algebraic Model The pure integer model below repeats some of what was dis-
cussed in the Cargo Plane example, but the constraints are more challenging to
graph, because some of the left-hand side coefficients are negative.

maximize 4X1 + 3X2
subject to

(1) −X1 + 6X2 ≤ 18
(2) −2X1 + 5X2 ≥ 10

X1 , X2 ∈ {0,1,2,3, . . .}

Points for the Boundaries of the Constraints We can proceed as we would
for a linear problem, drawing the axes, the boundaries of the two constraints, and
so on. However, finding the points for the boundary lines is complicated by the
presence of negative left-hand side coefficients.

1. To plot the boundary of (1), we set −X1+6X2 = 18. If X1 = 0, then X2 = 3.
However, when we set X2 = 0, we obtain −X1 = 18, and hence X1 = −18.
Since this point is not positive, it does not help us. Instead, to find another
point on the line, we add X1 to both sides to obtain:

6X2 = 18+X1

X2 = 3+
(

1
6

)
X1
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If we let X1 = 6, we obtain X2 = 3+1= 4. Hence the boundary of (1) passes
through (X1,X2) = (0,3) and (6,4). Since −0+ 6(0) = 0 ≤ 18, the origin
is feasible, and so the arrow points south-east.

2. To plot the boundary of (2), we set−2X1+5X2 = 10. If X1 = 0, then X2 = 2.
To find another point on the line we add 2X1 to both sides to obtain:

5X2 = 10+2X1

X2 = 2+
(

2
5

)
X1

If we let X1 = 5, we obtain X2 = 2+ 2 = 4. Hence the boundary of (2)
passes through (X1,X2) = (0,2) and (5,4). Since −2(0)+ 5(0) = 0 6≥ 10,
the origin is infeasible, and so the arrow points north-west.

Completing the Solution The boundary lines of the two constraints are plotted,
and we place the arrows on them. We then find the region in which both con-
straints and the two non-negativity restrictions are satisfied, and shade this region
in gold.

As we saw with the earlier Cargo Plane example, each point where both X1
and X2 are integers is represented as a dot, more formally called a lattice point.
There is a set of feasible points, which is the set of lattice points which satisfy
the constraints, i.e. they are either inside or on the boundary of the gold-shaded
region. In the graph shown in Figure 6.6 the lattice points are denoted by small
circles; the solid ones are feasible, the open ones are infeasible.4 This example
has four feasible solutions.

A trial isovalue line is drawn between (0,4) and (3,0). Moving the isovalue
line we see that the optimal solution to the integer model occurs at X∗1 = 2, X∗2 = 3,
from which it follows that OFV∗ = 4(2)+3(3) = 17.

Rounding Does Not Work In this example, to try to solve the model by treat-
ing it as if it were a linear example (i.e. with both variables being continuous),
and then rounding each variable up or down to the next integer, would not even
produce a feasible solution, much less an optimal one. The linear optimal solu-
tion, located at the boundaries of constraints (1) and (2), is X1 = 42

7 , X2 = 35
7 . The

four possible rounded solutions are (X1,X2) = (4,3), (4,4), (5,4), and (5,3), all of
which are infeasible.

4There is no need to draw the infeasible lattice points; they are shown only for illustrative
purposes.
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6.2.3 Mixed Integer Variations

It is interesting to see what happens if one variable must be integer but the other
is allowed to be continuous, thereby creating a mixed integer model.

X1 integer, but X2 continuous Suppose we consider the current model with
X1 ∈ {0,1,2, . . .} as before, but X2 ≥ 0. There is now neither a feasible region
as there is when both variables are continuous, nor is there a set of lattice points
as there is when both variables are integer, but instead there is a set of feasible
lines which are bounded by the gold-shaded region. In this example, there are five
vertical lines, one of which forms part of the vertical axis. The solution is shown
in Figure 6.7.

We see visually that the optimal value of X1 is 4, and that the vertical line
intercepts the boundary of constraint (1), which is −X1 +6X2 = 18. Substituting,
we have −4+ 6X2 = 18, and hence X2 = 32

3 . At (X1,X2) = (4,32
3) the OFV is

4(4)+3(32
3) = 16+11 = 27.

X2 integer, but X1 continuous We can easily find the solution for the situation
where X1 ≥ 0, and X2 ∈ {0,1,2,3, . . .} without drawing a separate picture. The
only horizontal line which could be drawn is the one through X2 = 3. The optimal
isovalue line will pass through this horizontal line and the boundary of constraint
(2). Hence we substitute X2 = 3 into −2X1 + 5X2 = 10 to obtain X1 = 2.5. The
OFV is 4(2.5)+3(3) = 19.

6.3 Introduction to 0/1 Variables for Binary Choice

In this section we show, through the use of six examples (plus an optional seventh
example), how to model a problem when some or all of the variables must be 0/1
integer. Examples 1 and 2 illustrate the concept of binary choice, by which many
managerial decisions are modelled. Example 3 translates requirements using the
words “if” or “only if” into mathematical constraints. Example 4 looks at binary
choice in the context of a capacity restriction. These ideas in the context of a
fixed cost are illustrated by Example 5. Example 6 considers these ideas where
no capacity restriction is explicitly given. Optional Example 7 is a fair bit harder;
it models a situation where there is a pair of constraints such that either, but not
necessarily both, must be satisfied.
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6.3.1 Example 1
Suppose that a company is considering opening at least one but no more than three
stores at five locations within a city. For each location we define a 0/1 variable:

Yi =

{
1 if a store is opened at location i
0 otherwise

}
i = 1,2,3,4,5

Note the use of the word otherwise. This gives the negation of the previous
statement, saving us from having to write “if a store is not opened at location i.”
Not all variable definitions can be shortened in this way however, as we shall see
in Example 6.

We require two constraints:

at least one store Y1 +Y2 +Y3 +Y4 +Y5 ≥ 1
at most three stores Y1 +Y2 +Y3 +Y4 +Y5 ≤ 3

Alternatively, we can use summation notation:

at least one store
5

∑
i=1

Yi ≥ 1

at most three stores
5

∑
i=1

Yi ≤ 3

Instead of the non-negativity restrictions, each variable is specified to be 0/1:

Yi ∈ {0,1} i = 1,2,3,4,5

6.3.2 Example 2
There are four items (one unit of each) awaiting shipment. We wish to transport
one or more of these items in an airplane so as to maximize the total payload value,
subject to a 12.3 Tonne restriction. This type of problem is called a knapsack
problem.

Item Weight (T) Value
1 4.3 29.5
2 1.9 11.3
3 5.8 34.0
4 3.6 19.7
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We define5 four variables each of which can take on the value 0 or 1.

Yi =

{
1 if item i is carried on the airplane
0 otherwise

}
i = 1,2,3,4

The 0/1 nature of each variable makes the objective function and the con-
straints work out as one would wish. For example, if item 1 is carried (Y1 = 1) on
the airplane, then it contributes 29.5 to revenue; if item 1 is not carried (Y1 = 0),
then it contributes nothing. Hence, whether or not item 1 is carried, it contributes
29.5Y1 to revenue. Applying this argument for each item the objective function is

maximize 29.5Y1 +11.3Y2 +34.0Y3 +19.7Y4

If item 1 is carried on the plane, then it uses 4.3 Tonnes of the available capacity;
otherwise, it uses nothing. Hence, whether or not item 1 is carried on the plane,
it uses 4.3Y1 Tonnes of the capacity. Continuing this argument for the other three
items, the weight restriction is

4.3Y1 +1.9Y2 +5.8Y3 +3.6Y4 ≤ 12.3

Finally, we must have:

Yi ∈ {0,1} i = 1,2,3,4

6.3.3 Example 3
Problem descriptions often contain the words “if” or “only if”. Suppose that five
locations for a food franchise have been identified, and that the problem statement
contains the words “if a restaurant is opened at location 3, then one will be opened
at location 5 also.” At each location there is binary choice and therefore we define:

Yi =

{
1 if a restaurant is opened at location i
0 otherwise

}
i = 1,2,3,4,5

The phrase “if a restaurant is opened at location 3” is equivalent to “if Y3 = 1”.
The full phrase is equivalent to “if Y3 = 1 then Y5 = 1.” Since each of Y3 and Y5 is
either 0 or 1, the requirement is met by the constraint Y5 ≥ Y3. If Y3 = 0, then we
obtain Y5 ≥ 0 which is trivially true; if Y3 = 1 then the constraint forces Y5 to be
greater than or equal to 1, but since Y5 must be either 0 or 1, the combined effect

5In this chapter we reserve the letter Y for representing 0/1 variables.
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is to force Y5 to be exactly one. The logically correct expression Y5 ≥ Y3 can be
re-written as either

−Y3 +Y5 ≥ 0

or as
Y3−Y5 ≤ 0

The statement “a restaurant could be opened at location 1 only if a restaurant is
opened at location 4” requires a relationship between Y1 and Y4. The logic requires
Y1 to be 0 if Y4 is 0; if Y4 = 1, then Y1 can be either 0 or 1. Hence we must have
Y1 ≤ Y4, or equivalently

Y1−Y4 ≤ 0

A statement in words may require more than one constraint. For example, “a
restaurant must be opened at location 2 if one is opened at either location 3 or 4”
implies that Y2 ≥ Y3 and Y2 ≥ Y4, i.e.

Y2−Y3 ≥ 0
Y2−Y4 ≥ 0

On the other hand, the statement “a restaurant must be opened at location 2 if
one is opened at both locations 3 and 4” logically requires Y2 to be 1 if the sum of
Y3 and Y4 is 2. Hence Y2 ≥ Y3 +Y4−1, or equivalently

−Y2 +Y3 +Y4 ≤ 1

Finally, we must have:

Yi ∈ {0,1} i = 1,2,3,4,5

6.3.4 Example 4
A US based firm wishes to export to the European Union. One of its options to
accomplish this is the building of a warehouse in Rotterdam. This binary choice
is conveniently modelled using a 0/1 variable:

Y1 =

{
1 if a warehouse is built in Rotterdam
0 otherwise

Suppose that the warehouse would cost seven million US dollars to build. If
the units of the (minimization) objective function are in millions of US dollars,
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then a 7Y1 would appear in the objective function.6 If the warehouse is built
(Y1 = 1), then a cost of 7× 1 = 7 units is incurred; if the warehouse is not built
(Y1 = 0), then a cost of 7×0 = 0 is incurred.

Suppose that the warehouse, if built, would have a capacity of 42,000 cubic
metres. Let the volume (in cubic metres) of the occupied space in the warehouse
be modelled by X1. Therefore we require that:

X1 ≤ 42000

If the warehouse is not built, then X1 = 0. We can force this to be the case by
using a constraint such as:

X1 ≤ 90000Y1

The number by which Y1 is multiplied can be anything that’s at least 42,000. Since
X1 ≥ 0 will be one of the non-negativity restrictions, the two constraints taken
together will enforce the following:

X1 ≤ 42000 if Y1 = 1
X1 = 0 if Y1 = 0

However, we can collapse X1 ≤ 42000 and X1 ≤ 90000Y1 into one by writing:

X1 ≤ 42000Y1

Keeping the convention that all variables must appear on the left we can re-write
this as

X1−42000Y1 ≤ 0

Finally, at the end we write X1 ≥ 0, and Y1 ∈ {0,1}.

6.3.5 Example 5
An assembly line costs $1000 to set up. Once set up, each unit produced con-
tributes $3.70 to profit. The line has a capacity of 800 units before it needs to be
re-set. If we let X represent the number of units produced, then the contribution
to profit is:

3.7X−1000 if X > 0
0 if X = 0

6If this were a maximization model then a −7Y1 term would appear.
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Here, an important managerial decision is whether or not to set up the line, which
we can represent using the variable Y .

Y =

{
1 if the line is set up
0 otherwise

The contribution to profit from this operation is a function of both variables X and
Y .

contribution = 3.7X−1000Y

We require that X not exceed the maximum production on the line before it needs
to be re-set, i.e. X ≤ 800. Also, we need to require that X be 0 when Y is 0. We can
accomplish this by a constraint such as X ≤ 1000Y . In this example, we can create
one constraint which acts as both a capacity constraint and a logical relationship
constraint, simply by writing:

X ≤ 800Y

This inequality, combined with the non-negativity restriction X ≥ 0, means that
0 ≤ X ≤ 800 when Y = 1, and X = 0 when Y = 0. Putting the Y variable on the
left we have:

X−800Y ≤ 0

Finally, we write X ≥ 0, and Y ∈ {0,1}.

6.3.6 Example 6

The two previous examples have given capacity restrictions. When no capacity
restriction is given, a parameter “M” must be introduced. Suppose that an input
to a firm costs $2.30 per kg, based on a minimum order quantity of 100 kgs. If
X represents the amount (in kgs) purchased, then either X = 0, or X ≥ 100. In a
minimization objective function there is, as one would expect, a 2.3X term, but
two more constraints are needed to handle the discontinuity in X . First, we need
to define a 0/1 variable Y :

Y =

{
1 if X ≥ 100
0 if X = 0
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(Note that the use of the word otherwise would not have been applicable here.)
By writing the constraint X ≥ 100Y , or equivalently,7

−X +100Y ≤ 0

X is forced to be at least 100 if Y = 1. But this is not enough. We also need
to force X to be 0 if Y = 0. This is accomplished in part by the non-negativity
restriction X ≥ 0, and in part by a constraint of the form

X ≤MY

or
X−MY ≤ 0

Here, “M” represents a large number, at least as large as X is likely to be. Sup-
pose that X would certainly be no more than 4000 kgs. Then the constraint
X − 4000Y ≤ 0 forces X to be 0 if Y = 0, and allows X to be as much as 4000
if Y = 1. The “M” is used in a formulation to indicate the logic of the model.
When solving the model on a computer, a particular value for M must be used.
The particular value for M should be as large as is needed, but given this, should
be as small as possible for the sake of computational efficiency. As before, at the
end we add X ≥ 0, and Y ∈ {0,1}.

6.3.7 Example 7 (Optional)
Normally, each constraint of a model must be satisfied. Sometimes, however,
there is a pair of constraints such that at least one (but not necessarily both) must
be satisfied. For example, suppose that we require that either

4X1 +7X2 ≤ 25 (1)

or
5X1 +3X2 ≤ 32 (2)

but we do not require that both be satisfied. To handle this situation we define:

Y =

{
1 if constraint (2) must be satisfied
0 if constraint (1) must be satisfied

7The form −X + 100Y ≤ 0 is more computationally efficient than X − 100Y ≥ 0. This is
because the simplex algorithm needs to add what is called an artificial variable for each ≥ (and
each =) constraint.
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As in Example 6, we use a suitably large number “M”. We now alter the con-
straints to obtain:

4X1 +7X2 ≤ 25+MY
5X1 +3X2 ≤ 32+M(1−Y )

If Y = 0, then we have

4X1 +7X2 ≤ 25
5X1 +3X2 ≤ 32+M

Since M is large, the second constraint becomes redundant, yielding

4X1 +7X2 ≤ 25

If Y = 1, then we have

4X1 +7X2 ≤ 25+M
5X1 +3X2 ≤ 32

which is equivalent, since M is large, to

5X1 +3X2 ≤ 32

As before, M needs to be numerically specified in order to solve the model using
a computer. If M is 1000, then we obtain

4X1 +7X2−1000Y ≤ 25
5X1 +3X2 +1000Y ≤ 1032

Finally, we require that X1 ≥ 0, X2 ≥ 0, Y ∈ {0,1}.

Exercise

Suppose now that we were to change both constraints of Example 7 to be equality
constraints. Show how to formulate this modified model.
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6.4 Formulation Problems with 0/1 Variables

6.4.1 Locating Distribution Terminals
Description

Suppose that a company based in St. John’s is considering adding distribution ter-
minals in (1) Halifax, (2) Moncton, (3) Montréal, (4) Ottawa, and (5) Toronto.
The cost of building the five terminals in millions of dollars would be 10 in Hal-
ifax, 12 in Moncton, 20 in Montréal, 18 in Ottawa, and 25 in Toronto. No more
than two terminals may be built. If no terminal is built in Halifax, then one must
be built in Moncton. At least one terminal must be built in central Canada (i.e. at
locations (3), (4), or (5)).

Formulation

In each of these cities they either build the terminal or do not, so we can let a
subscripted variable handle each decision:

Y1 =

{
1 if a terminal is built in city 1 (Halifax)
0 otherwise

Y2 =

{
1 if a terminal is built in city 2 (Moncton)
0 otherwise

and so on. Instead of defining five variables separately, we could define all five at
once:

Yi =

{
1 if a terminal is built in city i (i = 1, . . . ,5)
0 otherwise

In writing the objective function, the beauty of the 0/1 nature of the variables
becomes apparent, because the cost of building in Halifax is 10Y1; if they build
there the cost would be 10(1) = 10, and if they don’t build there the cost will be
10(0) = 0. Hence the cost of building the terminals will be:

10Y1 +12Y2 +20Y3 +18Y4 +25Y5

There is a constraint that no more than two terminals may be built; this is simply:

Y1 +Y2 +Y3 +Y4 +Y5 ≤ 2

We need a constraint to ensure that if no terminal is built in Halifax, then one
must be built in Moncton. What we are saying is that “if Y1 = 0, then Y2 = 1”. We
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see that this can be accomplished by (1) building in Halifax alone; (2) building in
Moncton alone; or (3) building in both Halifax and Moncton. The way to write
this is:

Y1 +Y2 ≥ 1

Finally, we need at least one terminal built in central Canada (i.e. one of Montréal,
Ottawa, or Toronto). This is:

Y3 +Y4 +Y5 ≥ 1

At the end of the formulation we simply write that these variables must be 0/1.
For the Solver on Excel, we would use the “Add constraint” feature to declare the
variable cells to be “bin” (meaning “binary”).

minimize 10Y1 +12Y2 +20Y3 +18Y4 +25Y5
subject to

at most two terminals Y1 +Y2 +Y3 +Y4 +Y5 ≤ 2
Halifax or Moncton Y1 +Y2 ≥ 1

central Canada Y3 +Y4 +Y5 ≥ 1

Yi ∈ {0,1} i = 1, . . . ,5

This little example is so simple that we can solve it just by looking at it. The
optimal solution is to build terminals in Halifax and Ottawa for a total cost of 28
million dollars.

6.4.2 Buying Family Pets
Description

John and Janet Noseworthy have three children named Becky, Peter, and Alice.
They have mentioned the idea of buying some pets, and the children are delighted.
Becky would like a cat, a big dog, and a bird; Peter wants a cat, a little dog, and a
big dog; and Alice would like a little dog, a big dog, and an aquarium of fish. The
cost to purchase and look after these animals for a year would be:

Pet Cat Little Dog Big Dog Bird Fish
Cost $1000 $1300 $1800 $400 $600

They will only buy one of any kind of pet. For example, if they buy a cat, Becky
and Peter will share him/her. The parents have promised that each child will



264 CHAPTER 6. INTEGER MODELS

receive at least two of his/her wishes. They have a budget of $3600. They won’t
buy both a little dog and a big dog. They won’t buy both a cat and a bird. They
wish to maximize the number of each child’s wishes granted.

Formulation

Let the five animals be indexed from 1 to 5 as follows: 1 cat; 2 little dog; 3 big
dog; 4 bird; 5 fish.

Yi =

{
1 if animal i is purchased (i = 1, . . . ,5)
0 otherwise

maximize 2Y1 +2Y2 +3Y3 +Y4 +Y5
subject to

Becky’s wishes Y1 +Y3 +Y4 ≥ 2
Peter’s wishes Y1 +Y2 +Y3 ≥ 2
Alice’s wishes Y2 +Y3 +Y5 ≥ 2

Budget 1000Y1 +1300Y2 +1800Y3 +
400Y4 +600Y5 ≤ 3600

not both dogs Y2 +Y3 ≤ 1
not a cat and a bird Y1 +Y4 ≤ 1

Yi ∈ {0,1} i = 1, . . . ,5

Solution

This is put onto a spreadsheet, with =SUMPRODUCT(B3:F3,B4:F4) in cell
A3, and =SUMPRODUCT($B$4:$F$4,B6:F6) in cell G6, which is copied into
the range G6:G11.8

8Note that we did not put the adjectives “Little” and “Big” in their own cells C1 and D1, but
instead they appear as part of the variable names in row 2. This makes columns C and D rather
wide, but it ensures that the correct wording will appear in the Answer Report.



6.4. FORMULATION PROBLEMS WITH 0/1 VARIABLES 265

1
2
3
4
5
6
7
8
9

10
11

A B C D E F G H I
Buying Pets
Wishes granted Cat Little Dog Big Dog Bird Fish

0 2 2 3 1 1

Becky's wishes 1 1 1 0 >= 2
Peter's wishes 1 1 1 0 >= 2
Alice's wishes 1 1 1 0 >= 2
Budget 1000 1300 1800 400 600 0 <= 3600
not both dogs 1 1 0 <= 1
not a cat and a bird 1 1 0 <= 1

Things are similar to that of a linear model, except that we must declare the vari-
able cells (the range B4:F4) to be binary. Doing this the top part of the Solver
Parameter box is as follows:

The model is then solved to obtain:
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1
2
3
4
5
6
7
8
9

10
11

A B C D E F G H I
Buying Pets
Wishes granted Cat Little Dog Big Dog Bird Fish

6 2 2 3 1 1
1 0 1 0 1

Becky's wishes 1 1 1 2 >= 2
Peter's wishes 1 1 1 2 >= 2
Alice's wishes 1 1 1 2 >= 2
Budget 1000 1300 1800 400 600 3400 <= 3600
not both dogs 1 1 1 <= 1
not a cat and a bird 1 1 1 <= 1

We see that they buy a cat, a big dog, and a fish, and that six of the children’s
wishes are granted. The top part of the Answer Report is:

Objective Cell (Max)

Cell Name Original Value Final Value

$A$3 Wishes granted 0 6

Variable Cells

Cell Name Original Value Final Value Integer

$B$4 Cat 0 1 Binary

$C$4 Little Dog 0 0 Binary

$D$4 Big Dog 0 1 Binary

$E$4 Bird 0 0 Binary

$F$4 Fish 0 1 Binary

Constraints

Cell Name Cell Value Formula Status Slack

$G$6 Becky's wishes 2 $G$6>=$I$6 Binding 0

$G$7 Peter's wishes 2 $G$7>=$I$7 Binding 0

$G$8 Alice's wishes 2 $G$8>=$I$8 Binding 0

$G$9 Budget 1700 $G$9<=$I$9 Not Binding 100

$G$10 not both dogs 1 $G$10<=$I$10 Binding 0

$G$11 not a cat and a bird 1 $G$11<=$I$11 Binding 0

$B$4:$F$4=Binary

The variables which are in the solution are the ones which are 1 in the Final Value
column, i.e. a cat, a big dog, and an aquarium of fish.

6.4.3 A Covering Problem
The specific application discussed here is fire protection, but the context puts it
into the general problem of covering. In an earlier chapter, we saw an example of
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covering where the specific application was the determination of the requirements
for police constables.

Description

The Avalon Regional Government has six sectors which need fire protection. Ade-
quate fire protection can be provided in each sector either by building a fire station
in that sector, or by building a fire station in another sector which is no more than
a 12 minute drive away. The time to drive between the centres of each pair of
sectors is given in the following table. (Because of one-way streets and left-turns
the times are not symmetric.) The cost to build a fire station is the same in each
sector. We wish to formulate a model whose purpose is to choose which sectors
should have their own fire station.

To
From 1 2 3 4 5 6

1 0 7 15 21 23 18
2 9 0 17 20 18 11
3 13 18 0 12 8 19
4 18 14 20 0 28 10
5 13 10 12 14 0 23
6 19 13 7 16 8 0

Formulation

The problem as stated has a straightforward formulation. In each sector, either a
fire station is built, or it is not built. Hence we define:

Yi =

{
1 if a fire station is built in sector i
0 otherwise

}
i = 1,2,3,4,5,6

Consider sector 1. It can be reached from sector 2 in 9 (≤ 12) minutes, but it
cannot be reached from any other sector in the 12 minute window. Therefore,
in order to provide adequate fire protection to sector 1, a station must be built in
either sector 1 or sector 2 (or both). Hence we require that

Y1 +Y2 ≥ 1

Sector 2 can be reached within 12 minutes from either sector 1 (7 minutes) or
sector 5 (10 minutes). Hence we require that

Y1 +Y2 +Y5 ≥ 1
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We continue this process for the other four sectors, in each case finding the times
in the column which do not exceed 12. Since the cost of building a fire station is
the same in each sector, we can minimize the total cost by minimizing the number
of fire stations built. Hence the model is

minimize Y1 + Y2 + Y3 + Y4 + Y5 + Y6
subject to

Sector 1 Y1 + Y2 ≥ 1
Sector 2 Y1 + Y2 + Y5 ≥ 1
Sector 3 Y3 + Y5 + Y6 ≥ 1
Sector 4 Y3 + Y4 ≥ 1
Sector 5 Y3 + Y5 + Y6 ≥ 1
Sector 6 Y2 + Y4 + Y6 ≥ 1

Yi ∈ {0,1} (i = 1, . . . ,6)

A More Complicated Model (Optional)

If the original statement of the problem had not had specific numbers, but instead
the times from sector i to sector j had been given as ti j, then a more complex
formulation would have resulted. Of course, this more complex model is more
robust.

To handle this problem, we need an additional set of variables. 9 We define

Fi j =


1 if sector i has a station

serving sector j
0 otherwise

 i = 1, . . . ,6 j = 1, . . . ,6

As before, the objective function is

minimize
6

∑
i=1

Yi

Each sector j needs to be served from somewhere, therefore we obtain the follow-
ing six constraints:

6

∑
i=1

Fi j ≥ 1 j = 1, . . . ,6

9The additional set is required; the original six variables do not have to be used, but it is easier
to do so.
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Sector i can only serve j if the travel time does not exceed 12 minutes. This gives
30 constraints:

ti jFi j ≤ 12 i = 1, . . . ,6 j = 1, . . . ,6 j 6= i

Sector i can only serve sector j if sector i has a fire station. Since both Fi j and Yi
are 0/1 variables, we can accomplish this by writing, for each i and j, Fi j ≤ Yi, or
equivalently, Fi j−Yi ≤ 0. (In the case where i = j, we could write Fii−Yi = 0,
rather than Fii−Yi ≤ 0, without affecting the solution.) The complete formulation
is:

minimize
6

∑
i=1

Yi

subject to

(1) . . .(6)
6

∑
i=1

Fi j ≥ 1 ( j = 1, . . . ,6)

(7) . . .(36) ti jFi j ≤ 12


i = 1, . . . ,6
j = 1, . . . ,6
j 6= i


(37) . . .(72) Fi j−Yi ≤ 0

{
i = 1, . . . ,6
j = 1, . . . ,6

}

Yi,Fi j ∈ {0,1}
{

i = 1, . . . ,6
j = 1, . . . ,6

}
6.4.4 A Fixed Charge Problem
When a problem contains a cost of the all-or-nothing type, we have a fixed charge
problem. An example of this is a water utility which charges $400 per annum
for hookup to the water mains regardless of consumption, rather than equip each
consumer with a meter so that they can be charged at, for example, $0.002 per litre.
Sometimes, a product has both a fixed and a variable component, for example, an
power utility might charge a connection fee of $17 per month and a consumption
fee of $0.11 per kilowatt-hour. Often a product is sold as if the cost were variable
but in reality it is essentially fixed. An example of such a product is airline seats;
it does not cost much more to fly a plane which is nearly full than one which is
nearly empty. Hence, an airline which is trying to model its operations would
probably represent each flight as a fixed charge which can be avoided only by
canceling the flight. Each fixed charge needs to be modeled using a 0/1 variable,
as the following example illustrates.
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Description

A firm wishes to produce a single product at one or more locations so that the total
monthly cost is minimized subject to demand being satisfied. At each location
there is a fixed charge to be paid if any are produced (but is nil otherwise), and
a variable cost which depends on whether the units are produced on regular time
or on overtime. Each location has capacity restrictions on regular and overtime
production. The relevant data are:

Plant Fixed Regular Time Overtime
Location Cost Unit Cost Capacity Unit Cost Capacity

1 2000 3.80 1000 4.60 400
2 3000 2.90 1200 4.10 550
3 1500 4.20 1500 5.60 600
4 2400 3.40 1300 4.20 450
5 2700 3.60 1400 5.10 500

Demand is for 5100 units per month.

Formulation

Whenever there is a cost which is either 0 or a fixed amount greater than 0, de-
pending on whether the production level is 0 or greater than 0, a 0/1 variable is
needed to model the situation. We define

Yi =

{
1 if the production at location i is > 0
0 otherwise

}
i = 1,2,3,4,5

Production at each location may occur on regular time, or on both regular time
and overtime. We define:

Ri = regular time production level at location i i = 1,2,3,4,5

Oi = overtime production level at location i i = 1,2,3,4,5

The objective function is therefore:

minimize 2000Y1 +3000Y2 +1500Y3 +2400Y4 +2700Y5

+ 3.8R1 +2.9R2 +4.2R3 +3.4R4 +3.6R5

+ 4.6O1 +4.1O2 +5.6O3 +4.2O4 +5.1O5
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The capacity of regular time production at plant 1 is 1000 units. Hence we require
that:

R1 ≤ 1000

Also, we must force R1 to be 0 if Y1 = 0, This logical relationship is ensured
by having a constraint of the form R1 ≤ MY1, where M is any sufficiently large
number.10 We could require, for example, that:

R1 ≤ 5000Y1

Hence we limit the capacity by writing R1 ≤ 1000, and we enforce the require-
ment that the production be 0 if the plant is closed, by writing R1 ≤ 5000Y1, or
equivalently R1− 5000Y1 ≤ 0. Later, we present the entire formulation in which
this conceptualization is used. For all five plants we have:

R1 ≤ 1000
R2 ≤ 1200
R3 ≤ 1500
R4 ≤ 1300
R5 ≤ 1400

At each plant i, there can be no regular time production if the plant is closed. The
value of M = 5000 can be used for all inequalities:

Ri−5000Yi ≤ 0 (i = 1,2,3,4,5)

In a situation like this, we can accomplish both the need to limit the capacity
and the requirement to make the production 0 when the plant is closed simply by
using one constraint:

R1 ≤ 1000Y1

This single inequality is valid because if Y1 = 1, we create the constraint R1 ≤
1000, and if Y1 = 0, we force R1 to be 0. This constraint can be re-written as:

R1−1000Y1 ≤ 0

10For this particular constraint, any number that’s at least 1000 would work.
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Doing this for all locations we obtain:

R1−1000Y1 ≤ 0
R2−1200Y2 ≤ 0
R3−1500Y3 ≤ 0
R4−1300Y4 ≤ 0
R5−1400Y5 ≤ 0

We later present a model which uses the above conceptualization, which re-
duces the number of constraints.

A similar set of constraints applies to the overtime production. Using the first
way we write:

O1 ≤ 400
O2 ≤ 550
O3 ≤ 600
O4 ≤ 450
O5 ≤ 500

At each plant i, there can be no overtime production if the plant is closed:

Oi−5000Yi ≤ 0 (i = 1,2,3,4,5)

Using the second way in which these constraints are combined, we have:

O1−400Y1 ≤ 0
O2−550Y2 ≤ 0
O3−600Y3 ≤ 0
O4−450Y4 ≤ 0
O5−500Y5 ≤ 0

Although logically Oi must be 0 unless Ri is at its capacity, there is no need to
force this logic by using constraints. This is because the objective is to minimize
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cost, and hence at any location the cheaper regular time production would have
to be at its capacity before any of the more expensive overtime production could
begin.11

We must ensure that the demand is met:

5

∑
i=1

(Ri +Oi)≥ 5100

Finally, we note that each Yi variable must be ∈ {0,1}, i = 1,2,3,4,5, but each Ri
and each Oi merely has the usual non-negativity restriction.12

In summary, the variables are:

Yi =

{
1 if the production at location i is > 0
0 otherwise

}
i = 1,2,3,4,5

Ri = regular time production level at location i i = 1,2,3,4,5
Oi = overtime production level at location i i = 1,2,3,4,5

The model is now presented in two versions. The first contains ten more con-
straints than the second one, caused by separating the capacity constraints from
the constraints which force the production to be nil if the plant is closed.

11If, for some reason, overtime were cheaper than regular time, then of course a different model
would result.

12This is true even if the units are integral things such as screwdrivers rather than continuous
things such as litres of paint. The presence of integral demand and capacities combined with the
seeking of corner point solutions by the simplex algorithm will ensure that each Ri and each Oi is
integer, hence there is no need to make these variables explicitly integer. Even if this were not so,
the integrality of these variables is unimportant compared with the fixed charge variables.
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minimize 2000Y1 +3000Y2 +1500Y3 +2400Y4 +2700Y5
+ 3.8R1 +2.9R2 +4.2R3 +3.4R4 +3.6R5
+ 4.6O1 +4.1O2 +5.6O3 +4.2O4 +5.1O5

subject to
Capacity on Regular Time at Plant

1 R1 ≤ 1000
2 R2 ≤ 1200
3 R3 ≤ 1500
4 R4 ≤ 1300
5 R5 ≤ 1400

No Regular Time if Plant i is Closed
Big M Method with M = 5000

Ri−5000Yi ≤ 0 (i = 1,2,3,4,5)
Capacity on Overtime at Plant

1 O1 ≤ 400
2 O2 ≤ 550
3 O3 ≤ 600
4 O4 ≤ 450
5 O5 ≤ 500

No Overtime if Plant i is Closed
Big M Method with M = 5000

Oi−5000Yi ≤ 0 (i = 1,2,3,4,5)
Demand ∑

5
i=1(Ri +Oi) ≥ 5100

all variables ≥ 0
Yi ∈ {0,1}, i = 1,2,3,4,5

In the second version, the size is reduced by imbedding the capacity within
the constraints that enforce that there be no production when the plant is closed.
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minimize 2000Y1 +3000Y2 +1500Y3 +2400Y4 +2700Y5
+ 3.8R1 +2.9R2 +4.2R3 +3.4R4 +3.6R5
+ 4.6O1 +4.1O2 +5.6O3 +4.2O4 +5.1O5

subject to
Capacity on Regular Time at Plant

1 R1−1000Y1 ≤ 0
2 R2−1200Y2 ≤ 0
3 R3−1500Y3 ≤ 0
4 R4−1300Y4 ≤ 0
5 R5−1400Y5 ≤ 0

Capacity on Overtime at Plant
1 O1−400Y1 ≤ 0
2 O2−550Y2 ≤ 0
3 O3−600Y3 ≤ 0
4 O4−450Y4 ≤ 0
5 O5−500Y5 ≤ 0

Demand ∑
5
i=1(Ri +Oi) ≥ 5100

all variables ≥ 0
Yi ∈ {0,1}, i = 1,2,3,4,5

6.4.5 A Model with Economies of Scale
Description

A firm purchases an input from a supplier. The unit price of this input depends on
the quantity ordered:

Range Unit Cost
First 100 units $6.90
Next 400 units $5.10
Each additional unit $3.70

This type of cost structure encourages large infrequent orders in order to ob-
tain a low average cost per unit. For example, to purchase 800 units would cost
100@$6.90 + 400@$5.10 + 300@$3.70 = $3840 or $4.80 each.

We are now at 30 June, with an inventory of 260 units. The production plan
requires the following number of units over the next six months:
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July August September October November December
700 650 380 900 320 450

There is a charge of $0.80 to hold one unit in inventory for one month; this charge
is based on the ending inventory in each month. We desire an end-of-year inven-
tory of at least 400 units. We wish to formulate a model which will minimize the
sum of purchase and inventory costs.

Formulation

As with the inventory problems which we saw in an earlier chapter, we define

It = the inventory level at the end of month t, t = 0, . . . ,6

Were it not for the varying per unit cost, we would have defined Xt as the amount
purchased in month t. Because, however, there are three prices which they could
pay (where 1 is $6.90 and 3 is $3.70), it is tempting to define Xti as the amount
purchased in month t at price level i. This would be fine if the unit cost increased
(or stayed the same) as a function of quantity ordered. An increase in cost would
be like the previous example in which overtime, which would only be used once
the regular time capacity has been reached, costs more per-unit than regular time.
However, in this example, the unit cost is decreasing, hence we need a new way
of looking at the problem.

Going back to Xt , we break the function up into its three parts:

1. If Xt ≤ 100, then the cost is 6.9Xt .

2. Since the cost of 100 units is 100@$6.90 = $690, then if 100 ≤ Xt ≤ 500,
the cost is

690+5.1(Xt−100) = 180+5.1Xt .

3. Since the cost of 500 units is $690 + 400@$5.10 = 2730, if at least 500 units
are purchased then the cost is

2730+3.7(Xt−500) = 880+3.7Xt .

To put all this into an objective function we will need to use three separate X-type
variables, which brings us back to Xti. However, we see that the definition which
we need is not the number sold at each price level, but instead

Xti = amount purchased in month t where the last unit
is sold at price level i, t = 1, . . . ,6 i = 1,2,3
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Hence, for each t, only one of the three Xti variables can be strictly positive. In
the formulation, we will need to enforce this logic using 0/1 variables. We define

Yti =

{
1 if Xti > 0
0 otherwise

}
t = 1, . . . ,6 i = 2,3

In month t, the purchase cost is:

6.9Xt1 +180Yt2 +5.1Xt2 +880Yt3 +3.7Xt3

In month t, the inventory cost is 0.8It . Since the initial inventory level is fixed at
I0 = 260, the term 0.8I0 may be included or excluded according to the decision
maker’s preference. Excluding it gives the following objective function:

minimize
6

∑
t=1

(6.9Xt1 +180Yt2 +5.1Xt2 +880Yt3 +3.7Xt3 +0.8It)

In each month, the initial inventory (which is the previous month’s ending inven-
tory), plus the amount purchased, must equal the amount used by the production
process plus the ending inventory. Expressing this algebraically with all variables
on the left, and including the initial and final conditions we have:

I0 = 260
I0 +X1,1 +X1,2 +X1,3− I1 = 700
I1 +X2,1 +X2,2 +X2,3− I2 = 650
I2 +X3,1 +X3,2 +X3,3− I3 = 380
I3 +X4,1 +X4,2 +X4,3− I4 = 900
I4 +X5,1 +X5,2 +X5,3− I5 = 320
I5 +X6,1 +X6,2 +X6,3− I6 = 450

I6 ≥ 400

Next, there are the constraints on Xt1.

X1,1 ≤ 100
X2,1 ≤ 100
X3,1 ≤ 100
X4,1 ≤ 100
X5,1 ≤ 100
X6,1 ≤ 100
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We require Xt2 to be 0 if Yt2 is 0, and to be between 100 and 500 if Yt2 is 1. The
logic is captured by:

100Yt,2 ≤ Xt,2 ≤ 500Yt,2 t = 1, . . . ,6

From this we obtain two constraints for each Xt2 variable. One is Xt,2 ≤ 500Yt,2,
or Xt,2−500Yt,2 ≤ 0. The other is 100Yt,2 ≤ Xt,2, or −Xt,2 +100Yt,2 ≤ 0. Writing
these for all months we obtain:

X1,2−500Y1,2 ≤ 0
X2,2−500Y2,2 ≤ 0
X3,2−500Y3,2 ≤ 0
X4,2−500Y4,2 ≤ 0
X5,2−500Y5,2 ≤ 0
X6,2−500Y6,2 ≤ 0
−X1,2 +100Y1,2 ≤ 0
−X2,2 +100Y2,2 ≤ 0
−X3,2 +100Y3,2 ≤ 0
−X4,2 +100Y4,2 ≤ 0
−X5,2 +100Y5,2 ≤ 0
−X6,2 +100Y6,2 ≤ 0

We need something similar for the Xt3 variables. However, there is no purchase
limit on these variables. Logically, we require that

Xt3 ≤ MYt3

Xt3 ≥ 500Yt3

We can leave the M as it is, or we can replace it with a number. Clearly, we
would not purchase more than 4000 units in any month, since this exceeds the
total requirement. Letting M = 4000 the constraints are:

X1,3−4000Y1,3 ≤ 0
X2,3−4000Y2,3 ≤ 0
X3,3−4000Y3,3 ≤ 0
X4,3−4000Y4,3 ≤ 0
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X5,3−4000Y5,3 ≤ 0
X6,3−4000Y6,3 ≤ 0
−X1,3 +500Y1,3 ≤ 0
−X2,3 +500Y2,3 ≤ 0
−X3,3 +500Y3,3 ≤ 0
−X4,3 +500Y4,3 ≤ 0
−X5,3 +500Y5,3 ≤ 0
−X6,3 +500Y6,3 ≤ 0

Optionally, we could add a set of constraints of the form Yt2 +Yt3 ≤ 1. These
constraints will be redundant because minimizing the objective function automat-
ically ensures that these constraints will be satisfied.

Finally, each Yti ∈ {0,1}, where t = 1, . . . ,6, and i = 2,3; each Xti ≥ 0, where
t = 1, . . . ,6, and i = 1,2,3.

Here is the complete formulation, indexing most of the constraints.

It = the inventory level at the end of month t, t = 0, . . . ,6

Xti = amount purchased in month t where the last unit
is sold at price level i, t = 1, . . . ,6 i = 1,2,3

Yti =

{
1 if Xti > 0
0 otherwise

}
t = 1, . . . ,6 i = 2,3
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minimize ∑
6
t=1(6.9Xt1 +180Yt2 +5.1Xt2 +880Yt3 +3.7Xt3 +0.8It)

subject to
Initial I0 = 260

I0 +X1,1 +X1,2 +X1,3− I1 = 700
I1 +X2,1 +X2,2 +X2,3− I2 = 650

Inventory I2 +X3,1 +X3,2 +X3,3− I3 = 380
Balance I3 +X4,1 +X4,2 +X4,3− I4 = 900

Equations I4 +X5,1 +X5,2 +X5,3− I5 = 320
I5 +X6,1 +X6,2 +X6,3− I6 = 450

Final I6 ≥ 400

Xt,1 ≤ 100 (t = 1, . . . ,6)
Relationships Xt,2−500Yt,2 ≤ 0 (t = 1, . . . ,6)
Between the −Xt,2 +100Yt,2 ≤ 0 (t = 1, . . . ,6)

Xti and Yti Xt,3−4000Yt,3 ≤ 0 (t = 1, . . . ,6)
Variables −Xt,3 +500Yt,3 ≤ 0 (t = 1, . . . ,6)

Xt,i ≥ 0 (t = 1, . . . ,6, i = 1,2,3)
Yt,i is 0/1 (t = 1, . . . ,6, i = 2,3)

In addition, we could represent the internal demand for this product in month
t as dt , where d is the vector:

d = (700,650,380,900,320,450)

This would enable us to collapse six inventory constraints to the form

It−1 +Xt1 +Xt2 +Xt3− It = dt t = 1, . . . ,6

We could also shorten the constraints horizontally as well as vertically by writing

It−1 +
3

∑
i=1

Xti− It = dt t = 1, . . . ,6

This symbolic form is highly advantageous when the model is very large. Of
course, numerical form must be used on the computer, but there are algebraic
modeling systems designed for this purpose.

6.4.6 Other Models (Optional)
In Appendix C two more models are discussed. A model on capacity planning
begins on page 485. A model involving a journey by rail begins on page 488.
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6.5 Summary

Integer optimization adds realism in modelling to the linear situation. In particu-
lar, the need to model “either-or” type situations calls for an integer formulation.
However, this increase in realism requires an increase in computational complex-
ity. When formulating such models, we must do so such that, when the integrality
restrictions are relaxed, the resulting model obeys the assumptions of linear op-
timization. There are some situations where rounding a fractional solution may
give an appropriate solution. While models with just two integer variables are
easy to solve graphically, the use of an algorithm such as the branch and bound
method is needed for optimally solving larger problems. Based on this algorithm,
either a spreadsheet solver or a dedicated package may be used to optimally solve
integer models.

6.6 Problems for Student Completion

6.6.1 Product Mix

Jennifer is making a large fruit salad for a party. She has everything she needs
at home, except for pineapples and bananas. She needs 12 pineapples, and 31
bananas. She goes to a nearby fruit stand, where she finds two vendors selling
bags of mixed fruit. Vendor 1 is selling bags containing two pineapples and ten
bananas for $12 per bag. Vendor 2 is selling bags containing four pineapples and
five bananas for $16 per bag. She wants to know how many bags she should buy
from each vendor to meet (or exceed) the requirements for the salad, but at the
least cost possible. Formulate and solve by the graphical method to determine the
best integer solution.
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6.6.2 Graphing Problem

A problem has been formulated as:

max 2X1 + 5X2
subject to

(1) X1 + 2X2 ≤ 6
(2) 5X1 − 3X2 ≤ 9
(3) −2X1 + 3X2 ≤ 0

X1 , X2 ∈ {0,1,2,3, . . .}

Solve this problem graphically to determine the optimal values for X1, X2, and
the OFV.

6.6.3 Manufacturing

A sports equipment manufacturer makes three types of squash racquets: Beginner,
Intermediate, and Advanced. Each racquet uses approximately the same amount
of raw materials, but different amounts of labour and machine time per racquet.

Racquet Type Labour Hours Machine Hours Profit
Beginner 1.0 3.0 15
Intermediate 3.2 4.0 21
Advanced 3.0 7.0 18

During the current planning period, there are 1600 labour hours and 2300
machine hours available for the production of squash racquets. At the end of the
period, production will shift to tennis racquets, and therefore partially completed
squash racquets would be of no value.

(a) Formulate as an integer model.

(b) Using the Solver on Excel, what is your recommendation to the sports equip-
ment manufacturer?
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6.6.4 Allocation Problem
A wealthy executive is being transferred from New York City to Tokyo. Since
the Japanese use right hand drive cars (i.e. they drive on the left), the executive
decides to give his five cars to his three children, who are remaining in New York.

Let

Yi j =

{
1 if car i is given to child j, i = 1, . . . ,5; j = 1,2,3
0 otherwise

Write a constraint or set of constraints for each of the following situations:

(a) no child may receive more than three cars

(b) each child must receive at least one car

(c) cars 2 and 4 may not be given to the same child

(d) child 2 may not receive more cars than child 1

(e) the same car cannot be given to more than one child

(f) if car 5 is given to child 1, then car 3 must be given to child 1 also

(g) if car 3 is given to child 1 or if car 4 is given to child 2, then car 1 must be
given to child 3.

6.6.5 Covering Problem Involving Banks
There are ten communities located along Highway # 2, none of which is currently
served by the Bank of New Scotland. The Bank is considering opening up to
three branches in the ten communities (no more than one branch per community).
They believe that they will capture 20% of the market in those communities in
which a branch is constructed. Furthermore, they believe that they will capture
10% of the market in any community which does not have its own branch but
which is contiguous to a community (on either or both sides) which does have
a branch. Each branch would have an annual overhead cost of $130,000. Each
customer would give an annual contribution to profit of $25. The population of
each community is:

Community 1 2 3 4 5 6 7 8 9 10
Population (000’s) 1 17 4 12 30 1 9 20 10 8
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(a) Formulate this problem.

(b) Solve it using the Excel Solver.

6.6.6 Fish Plant Production
Quantfisher Inc. buys fresh fish for processing. Quantfisher has an annual contract
with its supplier to buy up to 4600 Tonnes at the following set of incremental
prices:

First 1000 Tonnes (or any fraction) may be purchased @ $0.80/kg.
Next 2000 Tonnes (or any fraction) may be purchased @ $1.00/kg.
Next 1600 Tonnes (or any fraction) may be purchased @ $1.20/kg.
Quantfisher’s fish processing plant can operate on a one, two, or three shift per

day basis. (Shift two operates only if shift one operates, and shift three operates
only if shift two operates.) For each shift there is a fixed cost which exists if
the shift operates, but is nil otherwise, and a variable cost per kilogram of fish
processed. The costs and shift capacities are:

Fixed Cost Variable Cost Annual Capacity
Shift Per Annum Per Kilogram (Tonnes)

1 $500,000 $0.50 1700
2 $300,000 $0.70 1500
3 $100,000 $0.95 1300

If a shift operates at all, then the minimum amount processed is 1000 Tonnes
per annum on that shift (i.e. the amount processed on any shift is either 0 or
greater than or equal to 1000 Tonnes).

Quantfisher can sell processed fish for $1.80 per kg. They wish to know what
they should do to maximize their annual profit.

(a) Formulate this problem.

(b) Solve it using the Excel Solver.

6.6.7 Oil Storage Problem
Formulate the following problem.

A company buys oil for heating. The supplier doesn’t want to deal with small
orders, so there is a minimal order size of 50 litres. The price per litre is $0.90 per
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litre for the first 200 litres of an order, but each additional litre in the same order
costs only $0.75 per litre.

We are now at 31 October, with 300 litres on hand. The expected number of
litres that they will need over the next seven months is:

November December January February March April May
400 600 750 820 650 350 150

All orders arrive on the first of every month. The capacity of the tank is 1200
litres. There is a charge of $0.05 per litre per month; this charge is based on the
ending inventory in each month. They wish to have at least 100 litres on hand at
the end of May.
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Chapter 7

Goal Programming and Nonlinear
Models

This chapter presents two new type of models. The first several sections are de-
voted to the topic of goal programming, in which we seek to optimize a model
which has more than one objective. Then, we present the topic of optimization in
which the objective function is nonlinear, or the constraints are nonlinear, or both
of these are nonlinear.

7.1 Goal Programming

7.1.1 Introduction

We have assumed until now that each problem has a single objective. It may be
profit maximization, or cost minimization, or the optimization of a non-monetary
objective, such as minimizing pollution or maximizing energy output. We now
consider the situation where we have several goals at once.

One way in which multiple goals may arise is that there are many decision
makers, or there is one decision making authority, but it is responsible to many
interests. Governments have this problem in that they aim to keep taxes low, must
spend on many needs (education, roads, health care and so on), and must try not
to operate at a deficit. Even within private enterprise, multiple goals exist because
of the responsibility not just to the firm’s shareholders, but to the “stakeholders”
of the firm, which includes their customers, their employees, and the communities
in which the company operates, as well as the shareholders.

287
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At this point it is worthwhile to state that some problems of conflicting ob-
jectives are simply unsolvable, because they are incorrectly formulated in the first
place. For example, it does no good for a city council to say to the director of
the public library, “We want you to maximize free public access and minimize the
required subsidy from council.” What is do-able is an instruction such as “maxi-
mize free public access subject to a $1,000,000 budget” or “minimize the required
subsidy subject to keeping the library open at least 100 hours per week.” It may be
possible to solve either of these problems by a method already seen in this book,
such as linear optimization. Of course, the council could ask for 100 hours of
access and restrict the budget to $1,000,000. If this is feasible, then there is no
problem. If, however, this is infeasible, then we may wish to continue with one of
the methods of this chapter.

We will consider the multiple objective situation where the underlying struc-
ture of the problem is in accordance with the assumptions of linear optimization.
Within this context we consider goals with i) weighted priorities and ii) absolute
priorities. The latter situation is often called preemptive goal programming. It is
the objective which differs in these two methodologies; for either case we must
write the goals as constraints.

7.1.2 Deviational Variables

Until this chapter, a constraint has always been a requirement which must be sat-
isfied: should this not be possible, then the model is infeasible. In this chapter,
such a constraint is called a system constraint. However, we now permit a differ-
ent type of constraint, called a goal constraint, which may be violated if need be.
Sometimes, these are called hard and soft constraints respectively.

In goal programming, the multiple goals are formulated as goal constraints. A
typical context is that of a target. Given that we do not have to meet it exactly, we
begin with an expression which contains an approximation symbol rather than an
equal sign. For example, suppose that we want the expression 3X1 +7X2 to be at
or near a target value of 500. Using the symbol “≈” to mean “is targeted to be”
we write the goal as

3X1 +7X2 ≈ 500

By letting D represent the deviation from the target, we can change this expression
into an equality constraint:

3X1 +7X2 = 500+D
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Variable D can be either positive (overachievement of the target) or negative (un-
derachievement of the target). We need to break this variable into its positive and
negative components, because there will be different costs associated with under-
achievement and overachievement of the target. Hence we let

D+−D− = D

where D+ ≥ 0 and D− ≥ 0. Also, we want one of these to be exactly 0.1 This
occurs naturally when using the simplex algorithm, which is the underlying algo-
rithm of the Excel Solver.

Substituting and re-arranging we obtain:

3X1 +7X2 +D−−D+ = 500

If this is the first goal of several, then it is useful to subscript the deviational
variables:

3X1 +7X2 +D−1 −D+
1 = 500

An alternate notation is to define U1 as the underachievement of the first goal, and
O1 as the overachievement of the first goal, giving:

3X1 +7X2 +U1−O1 = 500

However, the plus and minus notation is traditional, so we will continue to use
it. Of course, once we put a model into Excel we can avoid using variable names
altogether.

In general, when a goal is specified as a target, and when the target can be
written in the form

n

∑
j=1

ai jX j ≈ bi

we will add D−i and subtract D+
i from the left hand side, and make the expression

an equality, obtaining:
n

∑
j=1

ai jX j +D−i −D+
i = bi

In the context of a target, the decision maker is trying to minimize both under-
achievement and overachievement. If we only wish to minimize underachieve-
ment, then the D+ variable can be omitted, with the expression having a greater

1While, for example, both 70− 0 and 80− 10 will equal 70, we want the values 70 and 0
because the 80 and 10 incur more costs.
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than or equal to sign.
n

∑
j=1

ai jX j +D−i ≥ bi

If we only wish to minimize overachievement, then the D− variable can be omit-
ted, with the expression having a less than or equal to sign.

n

∑
j=1

ai jX j−D+
i ≤ bi

Hence if the goal is one-sided, then only one of the two deviational variables is
needed, with the expression being an inequality.2

The objective function in goal programming is always of the minimization
form. In non-preemptive goal programming, each deviational variable has a coef-
ficient in the objective function. In preemptive goal programming, the goals are
ranked and are solved in descending order of importance. In the next two sections
an example of each type of model is discussed.

7.2 Weighted Goals

7.2.1 Problem Description – Smelter Model
A smelter is considering accepting concentrated ore3 from three sources. The
amounts of each in millions of Tonnes per annum are represented by X1, X2, and
X3. The smelter, which has 1600 employees, emits about 25,000 Tonnes per an-
num of sulphur dioxide (SO2).

The company’s management has stated three objectives to various stakehold-
ers, none of these being legally binding. To the shareholders, they have stated
that they hope for a contribution to profit of at least $45,000,000 per annum. To
the union which represents their employees, they have stated that no layoffs are
planned, but at the same time, they wish to avoid needing to hire more employ-
ees. Finally, to the public at large, they have stated their intention to reduce the
pollution of SO2 to 20,000 Tonnes per annum.

2Alternatively, we can use both types of variables for each goal, the expression being an equal-
ity. In the latter case, the unneeded variable will not appear in the objective function.

3Before ore from a mine goes to a smelter it is first crushed, then grinded, and then goes through
a flotation process which separates the ore from the host rock. These three operations are called
concentration.
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At a meeting of the board of directors, several statements were made which
indicate how the board views the relative cost of not meeting their goals:

1. failing to meet the profit objective by $1,000,000 is twice as bad as exceed-
ing the target for the SO2 emissions by 1000 Tonnes

2. we are indifferent between a shortfall of $1,000,000 and a underachieve-
ment in employment of 125 workers

3. an excess of 100 workers is only half as bad as a shortfall of 100 workers

No matter what the company does about profit, employment, or pollution, there
are two major technological restrictions which must be met; these limit the plant’s
operating level.

So that we can focus our attention on the goal programming aspect of this ex-
ample, suppose that the following initial formulation has already been completed:

1. the profit in millions of dollars per year is given by 10X1 +9X2 +14X3

2. employment in 100’s of employees is given by 4X1 +8X2 +6X3

3. SO2 emissions in 1000’s of Tonnes per annum is 5X1 +10X2 +7X3

4. the plant maximum operating level constraint is

4X1 +12X2 +9X3 ≤ 17

5. the plant minimum operating level constraint is

2X1 +3X2 +5X3 ≥ 8

7.2.2 Goal Formulation
Since the goal of having a profit of $45,000,000 is a minimum, overachievement
is not of concern. Therefore we only need D−1 , which we define as the amount
of money in millions of dollars by which the profit falls short of the goal. The
inequality is:

10X1 +9X2 +14X3 +D−1 ≥ 45
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The employment target is 16 hundred workers. Both deviational variables are
needed. D−2 represents the underachievement in hundreds of workers; D+

2 repre-
sents the overachievement in hundreds of workers. The constraint is an equality:

4X1 +8X2 +6X3 +D−2 −D+
2 = 16

Finally, there is the goal of reducing the SO2 emissions to be no more than 20
thousand Tonnes. Underachievement is not of concern, hence we only need D+

3 ,
which is defined as the amount by which the emissions goal is exceeded, expressed
in thousands of Tonnes. The inequality is:

5X1 +10X2 +7X3−D+
3 ≤ 20

The variables in the objective function are D−1 , D−2 , D+
2 , and D+

3 . Now we need
their coefficients, We can arbitrarily set a penalty weight of 1 for a $1,000,000
profit shortfall. To find the other coefficients, we need the statements from the
board of directors. We were told that “failing to meet the profit objective by
$1,000,000 is twice as bad as exceeding the SO2 emissions by 1000 Tonnes”.
From this it follows that an excess of 1000 Tonnes of SO2 has a penalty weight of
0.5 (inverse of 2 which comes from “twice as bad”). Then, we see that a shortfall
of 125 employees has a penalty weight of 1. Hence, a shortfall of 100 employees
has a weight of 100

125 × 1 = 0.8. Finally, since an excess of 100 workers is only
half as bad as an underachievement of 100 workers, the former has a weight of
0.8×0.5 = 0.4. If desired, these weights can be re-scaled by multiplying each of
them by a positive constant. Hence the objective function coefficients are:

Variable one unit means Original Weight Re-scaled Weight
D−1 $1,000,000 under 1 10
D−2 100 employees under 0.8 8
D+

2 100 employees over 0.4 4
D+

3 1000 T SO2 over 0.5 5
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The entire goal formulation is therefore:

minimize 10D−1 +8D−2 +4D+
2 +5D+

3
subject to

Profit 10X1 +9X2 +14X3 +D−1 ≥ 45 (1)
Employment 4X1 +8X2 +6X3 +D−2 −D+

2 = 16 (2)
SO2 5X1 +10X2 +7X3−D+

3 ≤ 20 (3)
Capacity 4X1 +12X2 +9X3 ≤ 17 (4)

Min. Production 2X1 +3X2 +5X3 ≥ 8 (5)

all variables must be ≥ 0

7.2.3 Solution

Putting this model onto Excel we have:

1
2
3
4
5
6
7
8
9
10
11

A B C D E F G H I J K
Smelter Model

OFV X1 X2 X3 D1- D2- D2+ D3+
0 0 0 0 10 8 4 5

minimize

Constraints RHS
Profit 10 9 14 1 0 >= 45
Employment 4 8 6 1 -1 0 = 16
SO2 5 10 7 -1 0 <= 20
Capacity 4 12 9 0 <= 17
Min. Production 2 3 5 0 >= 8

In cell A3, where we compute the OFV, we can omit the ranges for the X vari-
ables, and use just =SUMPRODUCT(E3:H3,E4:H4). However, we need all the
variable cells to be included in the computations in column I. In cell I7 we en-
ter =SUMPRODUCT(B$4:H$4,B7:H7), and this is then copied into the range
I7:I11. Solving the model by using the Excel Solver we obtain:
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1
2
3
4
5
6
7
8
9
10
11

A B C D E F G H I J K
Smelter Model

OFV X1 X2 X3 D1- D2- D2+ D3+
35.25 0 0 0 10 8 4 5

minimize 4.25 0 0 2.5 0 1 1.25

Constraints RHS
Profit 10 9 14 1 45 >= 45
Employment 4 8 6 1 -1 16 = 16
SO2 5 10 7 -1 20 <= 20
Capacity 4 12 9 17 <= 17
Min. Production 2 3 5 8.5 >= 8

The solution in brief is:

OFV∗ = 35.25
X∗1 = 4.25

D−∗1 = 2.50
D+∗

2 = 1.00
D+∗

3 = 1.25

with all other variables being zero. This solution is interpreted as follows:

1. X∗1 = 4.25, hence 4,250,000 Tonnes of ore from concentrator 1 is sent to the
smelter. (Nothing is accepted from concentrators 2 or 3.)

2. D−∗1 = 2.50 means that the profit is $2,500,000 below its target.

3. Since D+∗
2 = 1.00 the employment is 100 workers above its target.

4. Since D+∗
3 = 1.25 the pollution is 1250 Tonnes above the target.

5. The OFV in this situation is essentially meaningless. It is not measured in
dollars, employees, or Tonnes of SO2; the OFV is only a crude measure-
ment of the board’s discomfort with unsatisfied goals, as interpreted by the
aforementioned statements.

It would be up to management to decide whether this is a good or bad solution.
While no target is met, changing the solution so that one deviation is reduced will
result in at least one other deviation being increased. In this sense, the solution is



7.2. WEIGHTED GOALS 295

good: the misery has been shared by multiple stakeholders. (The union, however,
should be happy, since their membership will increase.)

By playing with the objective function coefficients, management can examine
alternate solutions. For example, suppose that we change the coefficient of D+

3
from 5 to 1000. Re-solving the model we obtain:

1
2
3
4
5
6
7
8
9
10
11

A B C D E F G H I J K
Smelter Model

OFV X1 X2 X3 D1- D2- D2+ D3+
50 0 0 0 10 8 4 1000

minimize 4 0 0 5 0 0 0

Constraints RHS
Profit 10 9 14 1 45 >= 45
Employment 4 8 6 1 -1 16 = 16
SO2 5 10 7 -1 20 <= 20
Capacity 4 12 9 16 <= 17
Min. Production 2 3 5 8 >= 8

We see that the pollution goal is met (indeed so is the employment target), but the
underachievement of the profit target increases from $2,500,000 to $5,000,000.
This decrease in profit of $2,500,000 to obtain a reduction in pollution from
21,250 to 20,000 Tonnes works out to an average cost of $2,000 per Tonne. Know-
ing this sort of information is useful when bargaining for the rights for a new pol-
lution abatement technology. Another kind of trade-off which could be calculated
is that between pollution and employment. Note that shadow prices do not help
us here, because the OFV is not measured in dollars.

Obviously, the difficult part of all this is obtaining the trade-off relationships
on which the objective function coefficients are based. A board of directors might
contain a major shareholder who is only interested in dividends, and an environ-
mental activist who wants the 20,000 to be not only met, but wishes the target
itself to be lowered. In this situation, it might be difficult to come up with a trade-
off statement; indeed, even a single individual might have this difficulty.

An alternate procedure is to rank the goals in descending order of importance.
This is investigated in the next section.
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7.3 Preemptive Goal Programming

In preemptive goal programming with n goals, each goal is ranked from the most
important (P1) to the least important (Pn). Goal i must be satisfied, or should
this not be possible, goal i must be as close to being satisfied as possible, before
goal i+ 1 can be considered. The technical operations to achieve this are quite
straightforward; the difficulty is a managerial one – that of determining not only
what the goals should be, but also the ranking of the goals. With n goals to rank,
there are n! possible orderings.

7.3.1 Problem Description – Energy Model

An electrical utility generates energy from both hydro (falling water) and thermal
sources. The latter include both conventional fossil fuels (coal, oil, and natural
gas), and nuclear. The demand for power fluctuates throughout the day and with
the seasons, giving rise to a base load with daily and seasonal requirements above
this level. By controlling the valves at a hydro-electric station the amount of power
can be varied, but thermal plants operate efficiently when producing at a constant
rate near the capacity of the plant. Hence thermal plants produce much of the base
load, with hydro stations supplying the rest up to the peak demands on the system.
It is also possible for a utility to buy or sell energy to a neighbouring utility.

Given its hydro resources and the anticipated demand, the utility needs 12,000
megawatts (MW)4 to come from thermal sources. Producing more is wasted;
producing less means brownouts or purchasing peak power from elsewhere. If
cost were the only consideration, they would not use any fossil-fuel plants. It
costs about 6.3 cents per kilowatt-hour (kwh) to produce electricity at a fossil-
fuel plant but only 5.4 cents per kwh at a nuclear plant. Energy is sold to local
distribution companies for 6 cents per kwh, hence the utility loses money on its
fossil-fuel thermal plants.

In addition to being more costly, there is more pollution from fossil-fuel plants.
Each 1000 MW of fossil-fuel power produces pollution at a rate of 2 units per
second, versus 1 unit per second for nuclear. The utility wishes the total pollution
rate to be no more than 16 units/second.

4The basic unit of energy is the joule, which is the energy required to exert a force of one
newton over a distance of one metre. Power, which is the rate of energy, is measured in watts, a
watt being a rate of one joule per second. As a practical measure, electrical energy is measured by
the kilowatt-hour, a kwh being the equivalent of 3,600,000 joules.
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Because of the fear of a Chernobyl type explosion, and the concern about
radioactive waste, there is a considerable anti-nuclear movement. Because of this,
the public affairs department has recommended that no more than 40% of the
thermal power come from nuclear sources.

The utility needs a contribution to profit of about 15 thousand dollars per hour
from its thermal plant operations in order to retire its long-term debt.

By building several small plants, any amount of fossil-fuel power can be pro-
duced up to 11,000 MW. There is only one approved site for a nuclear power plant,
which is limited to 10,000 MW.

7.3.2 Formulation
If all the preceding were hard constraints, we would formulate this problem as a
linear model. We begin by defining:

F = amount of fossil-fuel thermal power in 1000’s of MW

N = amount of nuclear thermal power in 1000’s of MW

For each 1000 MW of fossil-fuel power, the loss is

1000MW×1000KW/MW× ($.063− .06)/kwh = 3 thousand dollars per hour

For each 1000 MW of nuclear power, the contribution to profit is

1000MW×1000KW/MW× ($.06− .054)/kwh = 6 thousand dollars per hour

Contribution to profit is a constraint as well as an objective. Hence the linear
model is

maximize −3F +6N
subject to

Required power F +N = 12 (1)
Pollution 2F +N ≤ 16 (2)

Proportion −0.4F +0.6N ≤ 0 (3)
Required profit −3F +6N ≥ 15 (4)

Fossil-fuel capacity F ≤ 11 (5)
Nuclear capacity N ≤ 10 (6)

F,N ≥ 0
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Either by graphing the constraints, or by using the Excel Solver, it is easily ver-
ified that there is no feasible solution. (Indeed, this is so even without constraint
(4)). This being the case, it is formulated as a goal programming model.

Suppose that the first four constraints can be treated as goal constraints, while
the last two are system constraints. Since constraint (1) is now

F +N ≈ 12

We let D−1 and D+
1 be the amount in 1000’s of megawatts by which the target of

12,000 MW is underachieved or overachieved respectively. Hence

F +N +D−1 −D+
1 = 12

For the next three constraints, we use only one deviational variable:
We let D+

2 in pollution units per second be the amount by which the pollution
level is exceeded, giving

2F +N−D+
2 ≤ 16

We let D+
3 be the amount by which the right hand side of the proportion con-

straint is exceeded:
−0.4F +0.6N−D+

3 ≤ 0

Finally, we let D−4 be the amount in thousands of dollars per hour by which
the target for contribution to profit is not met:

−3F +6N +D−4 ≥ 15

There are five defined deviational variables and five priorities which need to
be established.5 Consequently, there are 5! = 120 ways to order the priorities.

It is not necessary to consider each ordering. At the outset, management must
decide which is the highest priority, then of the remaining four choose the most
important of these, and so on, entailing four (5− 1) separate decisions. They
might begin, for example, by deciding that above all else their customers will not
tolerate the need to ration electrical energy, so the first priority (P1) is to minimize
the underachievement of the 12000 MW, in other words, minimize D−1 . They
might next decide to meet the profit objective, for without that there will be no
further development of infrastructure, i.e. minimize D−4 . Continuing for all five
priorities could lead to:

5Optionally, there are three more deviational variables which could have been defined (D−2 ,
D−3 , and D+

4 ), giving four equality goal constraints, but the number of priorities would remain at
five.
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Priority Minimize Variable
P1 power shortage D−1
P2 profit shortage D−4
P3 excess pollution D+

2
P4 excess in the proportion D+

3
P5 power surplus D+

1

In the objective function, each Pi is written followed by the corresponding devia-
tional variable. Doing this, the entire formulation is:

minimize P1(D−1 )+P2(D−4 )+P3(D+
2 )+P4(D+

3 )+P5(D+
1 )

subject to
Required power F +N +D−1 −D+

1 = 12 (1)
Pollution 2F +N−D+

2 ≤ 16 (2)
Proportion −0.4F +0.6N−D+

3 ≤ 0 (3)
Required profit −3F +6N +D−4 ≥ 15 (4)

Fossil-fuel capacity F ≤ 11 (5)
Nuclear capacity N ≤ 10 (6)

all variables must be ≥ 0

Since the Pi’s are not objective function coefficients, the objective function in this
context is merely symbolic.6

7.3.3 Graphical Solution
Though this model has seven variables in total, it is nevertheless possible to solve
this model graphically. This is because it has only two decision variables, the other
five being deviational variables. Preemptive goal programming can be solved
graphically by solving several sub-problems sequentially. In each sub-problem,
the system constraints remain the same; it is only the objective function and the
goal constraints which change. At each iteration, the graph is based on the two
decision variables. Only one deviational variable is considered at each iteration,

6Optionally, the pollution, proportion, and required profit constraints could be written as:

Pollution 2F +N +D−2 −D+
2 = 16 (2)

Proportion −0.4F +0.6N +D−3 −D+
3 = 0 (3)

Required profit −3F +6N +D−4 −D+
4 = 15 (4)
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and it occupies a third dimension (which we are trying to minimize to 0) coming
out of the main plane.

At the outset, we minimize the deviational variable associated with the first
priority, subject to the goal constraint in which this variable appears, and to the
system constraints and non-negativity restrictions. In this example, the priority
1 deviational variable is D−1 , which appears in the first goal constraint (required
power). For the rest of the solution we will use constraint numbers only. Variable
D+

1 also appears in constraint (1): we can keep it in if we wish, or remove it to
obtain a constraint numbered (1a), which is

F +N +D−1 ≥ 12.

The latter approach makes the graphical solution more intuitive.
The first sub-problem is therefore:

minimize D−1
subject to

Required power F +N +D−1 ≥ 12 (1a)
Fossil-fuel capacity F ≤ 11 (5)

Nuclear capacity N ≤ 10 (6)

all variables must be ≥ 0

This model has three variables, not two. However, since the target value for
D−1 is 0, we can first deal with F and N as if the target value were obtainable.
Hence we graph this with F on the horizontal axis and N on the vertical axis. We
can think of D−1 as if it were coming out of the page, with the page itself having
D−1 = 0. Hence we plot (1a) in the form

F +N ≥ 12

It is not until we reach the fourth sub-problem that the third dimension will be-
come non-zero.

The feasible region, shown in gold in Figure 7.1, satisfies all constraints in
the first sub-problem. Subsequent sub-problems add more constraints, which will
gradually shrink the feasible region, until there is none at all in the fourth graph.

In all parts of the feasible region, D−1 = 0, and hence OFV= 0. The values of
F and N are immaterial (there are multiple optima).
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Figure 7.1: Energy Model: 1st Sub-problem
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Knowing that it is possible to obtain D−1 = 0, we add F +N ≥ 12 as a hard
constraint, and solve the sub-problem associated with the second priority.

minimize D−4
subject to

Required power F +N ≥ 12 (1a)
Required profit −3F +6N +D−4 ≥ 15 (4)

Fossil-fuel capacity F ≤ 11 (5)
Nuclear capacity N ≤ 10 (6)

all variables must be ≥ 0

The graph of the model for the second sub-problem is shown in Figure 7.2.
Again, an OFV of 0 has been obtained, D−4 being 0 everywhere inside the new
feasible region. Hence, we add −3F + 6N ≥ 15 as a hard constraint to the third
sub-problem:

minimize D+
2

subject to
Required power F +N ≥ 12 (1a)

Pollution 2F +N−D+
2 ≤ 16 (2)

Required profit −3F +6N ≥ 15 (4)
Fossil-fuel capacity F ≤ 11 (5)

Nuclear capacity N ≤ 10 (6)

all variables must be ≥ 0

The graph of the model for the third sub-problem is shown in Figure 7.3. In
this third feasible region D+

2 = 0. Hence we add 2F +N ≤ 16 as a hard constraint
to the fourth sub-problem:

minimize D+
3

subject to
Required power F +N ≥ 12 (1a)

Pollution 2F +N ≤ 16 (2)
Proportion −0.4F +0.6N−D+

3 ≤ 0 (3)
Required profit −3F +6N ≥ 15 (4)

Fossil-fuel capacity F ≤ 11 (5)
Nuclear capacity N ≤ 10 (6)

all variables must be ≥ 0
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Figure 7.2: Energy Model: 2nd Sub-problem
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Figure 7.4: Energy Model: 4th Sub-problem

The graph of the model for the fourth sub-problem is shown in Figure 7.4. The
boundary of constraint (3) with D+

3 = 0 which passes through the origin is seen to
be infeasible. Hence another constraint (3) was drawn, parallel with the first, so
that it just touches the feasible region of the third sub-problem. (This operation
is like the creation of parallel isovalue lines in the graphical technique for linear
models.) Doing this minimizes the value of D+

3 . This results in a unique feasible
solution with respect to F and N,7 which occurs at the boundaries of constraints
(1) and (2).

7Over all three variables F , N, and D+
3 , the feasible region is of infinite size, but because we

minimize with respect to D+
3 , we obtain a unique solution for F and N.
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By linear algebra, we determine that F = 4, and N = 8. By substituting into
(3), we see that D+

3 is minimized at 3.2. However, since (3) is a proportion con-
straint, the 3.2 is not of great practical significance. Instead, we are interested
in

N
F +N

=
8

4+8
= 66.7%

meaning that the target of 40% has been exceeded by 26.7%.
Given that F = 4 and N = 8, there is no point in graphing sub-problem (5).

Since the minimum value of D+
3 was found to be 3.2, this value is added to both

sides of the proportion constraint to obtain:

−0.4F +0.6N ≤ 3.2

Incorporating this constraint, the next subproblem is:

minimize D+
1

subject to
Required power F +N ≥ 12 (1a)
Required power F +N−D+

1 ≤ 12 (1b)
Pollution 2F +N ≤ 16 (2)

Proportion −0.4F +0.6N ≤ 3.2 (3)
Required profit −3F +6N ≥ 15 (4)

Fossil-fuel capacity F ≤ 11 (5)
Nuclear capacity N ≤ 10 (6)

all variables must be ≥ 0

Either by plugging in the values of F and N into (1b), or by noting directly
that constraint (1b) is binding, we see that D+

1 = 0. Hence, although the fourth
priority goal is not met, the fifth priority goal is met.

To solve this problem, all we needed to do is one make graph, i.e. the fourth
one of the four shown here. However, to illustrate the process sequentially, four
graphs were made. On the first three graphs, the existence of the region high-
lighted in gold means that all constraints up to that point can be satisfied. When
we reached the fourth graph, there is no solution any solution in the (F,N) plane,
and one of the deviational variables became non-zero.
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7.3.4 Solution Using the Excel Solver
Instead of solving each sub-problem by the graphical method, we could use a
computer. It is possible to solve the entire problem with one optimization, but this
requires a modified simplex algorithm.8 Most optimization packages which are
based on algebraic modeling contain this modified algorithm, but the Excel Solver
is not set up for this.

However, the ordinary simplex algorithm within Excel Solver can still be used,
with a bit of extra work. As with the graphical method, five sub-problems are
solved for this example, and hence up to five optimizations may be required. For
each optimization, the user alters the objective function and the constraints, just as
with the graphical method. For each optimization model, the value of that model’s
optimized deviational variable (be it 0 or more than 0) is frozen for the subsequent
optimization models.

We put the algebraic model into Excel as follows:

1
2
3
4
5
6
7
8
9
10
11

A B C D E F G H I J K L
OFV Energy Model
minimize P1 P2 P3 P4 P5 Model

0 F N D1- D4- D2+ D3+ D1+ 1

Constraints RHS
Required power 1 1 1 -1 0 = 12 1
Pollution 2 1 -1 0 <= 16 2
Proportion -0.4 0.6 -1 0 <= 0 3
Required profit -3 6 1 0 >= 15 4
Fossil-fuel capacity 1 0 <= 11 5
Nuclear capacity 1 0 <= 10 6

There are some things which are a bit different from what one might expect.

1. The deviational variables are ordered according to the priorities, rather than
the order in which they appear in the constraints.

2. There is no row of objective function coefficients, because each deviational
variable is considered sequentially.

8The technical details of this modified algorithm can be found, for example, in Wayne L.
Winston, Operations Research: Applications and Algorithms. (4th edition, Cengage, 2004).
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3. In the range of variable cells (B4:H4), one of the cells for the deviational
variables is to be minimized in each model. At the outset when we are
dealing with Priority 1, this is the value of D−1 in cell D4. Hence the OFV
in cell A3 is computed simply as =D4.

4. We need to run multiple models, so for the sake of clarity the model number
is indicated in cell K3.

5. Only some of the constraints will appear in each model. At the outset, these
are constraints (1), (5), and (6). These are identified by the green cells in
column L.

By contrast, filling in Column I is done in the usual way. We put
=SUMPRODUCT(B$4:H$4,B6:H6) into cell I6, and then copy this into the
range I6:I11. Also, most of what we do in the Solver is what we’ve done all along.
The exceptions are: (1) the third step on the following list, in which some of the
yellow cells are not declared as “changing cells”; and (2) the fourth step, in which
only some of the constraints are entered. Note that unlike the graphical solution,
we have kept the first constraint as it was in the algebraic model. However, an
alternate approach which does follow the graphical solution appears on page 312.

1. Make the “Set objective” cell $A$3.

2. Click the “min” radio button.

3. The changing cells are $B$4:$D$4,$H$4. Note that we have excluded
the cells for the values of D−4 , D+

2 , and D+
3 .

4. Subject to the constraints I6 = K6 and I10:I11 ≤ K10:K11. (These
are the constraints identified in green on the extreme right.)

5. Click on the box next to “Make Unconstrained Variables Non-Negative”.

6. Select the Simplex LP and the click on the “Solve” button.

We obtain:
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1
2
3
4
5
6
7
8
9
10
11

A B C D E F G H I J K L
OFV Energy Model
minimize P1 P2 P3 P4 P5 Model

0 F N D1- D4- D2+ D3+ D1+ 1
11 1 0 0

Constraints RHS
Required power 1 1 1 -1 12 = 12 1
Pollution 2 1 -1 23 <= 16 2
Proportion -0.4 0.6 -1 -3.8 <= 0 3
Required profit -3 6 1 -27 >= 15 4
Fossil-fuel capacity 1 11 <= 11 5
Nuclear capacity 1 1 <= 10 6

To make the second model we:

1. Change cell K3 from 1 to 2.

2. Change cell A3 from =D4 to =E4.

3. The second-priority deviational variable (which is D−4 in column E) appears
in row 9, so make cell L9 green.

4. In the Solver, we need to delete cell D4 from the list of changing cells,
and add cell E4 to this list. It is important to note the number in cell D4,
which is 0 from the first optimization, must remain at 0. The list is now
$B$4:$C$4,$E$4,$H$4.

5. In the Solver, add the relationship of row 9 to the list of constraints:
I9 ≥ K9.

We solve the model to obtain:
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1
2
3
4
5
6
7
8
9
10
11

A B C D E F G H I J K L
OFV Energy Model
minimize P1 P2 P3 P4 P5 Model

0 F N D1- D4- D2+ D3+ D1+ 2
6.33 5.67 0 0 0

Constraints RHS
Required power 1 1 1 -1 12 = 12 1
Pollution 2 1 -1 18.3 <= 16 2
Proportion -0.4 0.6 -1 0.87 <= 0 3
Required profit -3 6 1 15 >= 15 4
Fossil-fuel capacity 1 6.33 <= 11 5
Nuclear capacity 1 5.67 <= 10 6

To make the third model we:

1. Change cell K3 from 2 to 3.

2. Change cell A3 from =E4 to =F4.

3. The third-priority deviational variable (which is D+
2 in column F) appears

in row 7, so make cell L7 green.

4. In the Solver, replace E4 with F4. The 0 in cell E4 remains at this value.
The list is now $B$4:$C$4,$F$4,$H$4.

5. In the Solver, add the relationship of row 7 to the list of constraints:
I7 ≤ K7.

We solve the model to obtain:
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1
2
3
4
5
6
7
8
9
10
11

A B C D E F G H I J K L
OFV Energy Model
minimize P1 P2 P3 P4 P5 Model

0 F N D1- D4- D2+ D3+ D1+ 3
4 8 0 0 0 0

Constraints RHS
Required power 1 1 1 -1 12 = 12 1
Pollution 2 1 -1 16 <= 16 2
Proportion -0.4 0.6 -1 3.2 <= 0 3
Required profit -3 6 1 36 >= 15 4
Fossil-fuel capacity 1 4 <= 11 5
Nuclear capacity 1 8 <= 10 6

To make the fourth model we:

1. Change cell K3 from 3 to 4.

2. Change cell A3 from =F4 to =G4.

3. The fourth-priority deviational variable (which is D+
3 in column G) appears

in row 8, so make cell L8 green.

4. In the Solver, replace F4 with G4. The 0 in cell F4 remains at this value.
The list is now $B$4:$C$4,$G$4,$H$4.

5. In the Solver, add the relationship of row 8 to the list of constraints:
I8 ≤ K8.

We solve the model to obtain:
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1
2
3
4
5
6
7
8
9
10
11

A B C D E F G H I J K L
OFV Energy Model
minimize P1 P2 P3 P4 P5 Model

3.2 F N D1- D4- D2+ D3+ D1+ 4
4 8 0 0 0 3.2 0

Constraints RHS
Required power 1 1 1 -1 12 = 12 1
Pollution 2 1 -1 16 <= 16 2
Proportion -0.4 0.6 -1 -0 <= 0 3
Required profit -3 6 1 36 >= 15 4
Fossil-fuel capacity 1 4 <= 11 5
Nuclear capacity 1 8 <= 10 6

We have obtained D+
3 = 3.2, with F = 4, and N = 8. It may not be obvious,

but we do not need to run the fifth model; if we do, we will obtain D+
1 = 0.

An Alternate Solution Approach This alternate approach follows the approach
of the graphical solution. At the outset, we replace constraint (1) with constraint
(1a), in which the D+

1 variable does not appear, and the = sign is replaced by ≥.
We put >= in cell J6, and 1a in cell L6. When we perform the first optimization,
we do not allow the Solver the change the cell for the value of D+

1 (which is cell
H4), and now the first constraint is ≥. We set cell A3 to be =D4.

1. Make the “Set objective” cell $A$3.

2. Click the “min” radio button.

3. The changing cells are $B$4:$D$4. Note that we have excluded the cells
for the values of D−4 , D+

2 , D+
3 , and D+

1 .

4. Subject to the constraints I6≥ K6 and I10:I11≤ K10:K11. (These are
the constraints identified in green on the extreme right.)

5. Click on the box next to “Make Unconstrained Variables Non-Negative”.

6. Select the Simplex LP and the click on the “Solve” button.

We obtain:
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1

2

3

4

5

6

7

8

9

10

11

A B C D E F G H I J K L

OFV Energy Model
minimize P1 P2 P3 P4 P5 Model

0 F N D1- D4- D2+ D3+ D1+ 1
11 1 0

Constraints RHS
Required power 1 1 1 -1 12 >= 12 1a

Pollution 2 1 -1 23 <= 16 2

Proportion -0.4 0.6 -1 ‐3.8 <= 0 3

Required profit -3 6 1 ‐27 >= 15 4

Fossil-fuel capacity 1 11 <= 11 5

Nuclear capacity 1 1 <= 10 6

We see that cell H4 is blank, rather than 0. Other than this, there is no dif-
ference from what we did before. In each of the second, third, and fourth opti-
mizations, cell H4 is excluded from the list of changing cells, and constraint (1a)
remains ≥. Here is a summary for the first four optimizations:

K3 Set A3 Changing Cells Constraints
1 =D4 $B$4:$D$4 I6 ≥ K6 and I10:I11 ≤ K10:K11
2 =E4 $B$4:$C$4,$E$4 as for K3 = 1 plus I9 ≥ K9
3 =F4 $B$4:$C$4,$F$4 as for K3 = 2 plus I7 ≤ K7
4 =G4 $B$4:$C$4,$G$4 as for K3 = 3 plus I8 ≤ K8

The optimized models for K3 = 2, 3, 4 will be the same as shown earlier,
except for cell H4 being blank rather then 0.

To begin the fifth optimization, we change constraint (1a) back to its original
form as (1), an equality constraint. Now we minimize cell A3 which has been set
equal to H4, allowing cells B4:C4 and H4 to vary; we obtain a 0 in H4 (and hence
a 0 in A3). This is exactly what we obtained earlier in the fourth optimization.
The fifth optimization of this alternate approach is:
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1

2

3

4

5

6

7

8

9

10

11

A B C D E F G H I J K L

OFV Energy Model
minimize P1 P2 P3 P4 P5 Model

0 F N D1- D4- D2+ D3+ D1+ 5
4 8 0 0 0 3.2 0

Constraints RHS
Required power 1 1 1 -1 12 = 12 1

Pollution 2 1 -1 16 <= 16 2

Proportion -0.4 0.6 -1 ‐0 <= 0 3

Required profit -3 6 1 36 >= 15 4

Fossil-fuel capacity 1 4 <= 11 5

Nuclear capacity 1 8 <= 10 6

7.4 The Economic Order Quantity (EOQ) Model
Up to this point all the models that we have made have had linear objective func-
tions and constraints. By this, we mean that every expression is of the form “coef-
ficient× variable + coefficient× variable”. Sometimes, however, we cannot make
a model in this simple form. Instead, we have things such as variables which are
squared, or variables which are multiplied by other variables. When this happens,
we have a nonlinear model.

In this section we will make simple inventory model. We shall see that to solve
this model we need to optimize a nonlinear function.

7.4.1 Background Information
Companies often have several types of inventory: supplies and/or raw materials,
work-in-progress, and finished goods. There are both benefits and costs to having
inventories.

One of the benefits is that an inventory helps deal with uncertainty. For exam-
ple, a car dealer will have many cars on the lot, because if many customers come
in at once, the dealer wants to be able to sell a car immediately to each one. It
takes several weeks to order a car from the factory, and some customers would go
to another dealer rather than wait.

A related benefit of inventory is that it helps deal with fluctuations in the de-
mand, even when such fluctuations are known in advance. A rental car agency
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often has many cars available on the weekend, simply because the demand is
lower on the weekends. The fluctuation in demand creates an inventory of cars on
Saturday and Sunday.

Another reason to have inventory is that it is the result of obtaining a quantity
discount. We need a litre of oil and see it priced at $1.30. However, a case
containing 24 litres is just $20.40 (85 cents per litre). If we buy the case, we may
end up with several years’ supply of oil.

Even when there is no quantity discount from the supplier, companies often
order in bulk because it spreads the overhead cost of an order over a large quantity.
This cost, often called the “ordering cost”, consists of clerical time, paperwork,
and the cost of the time to obtain the signatures on the order form.

The cost of keeping inventory takes many forms, and depends highly on the
commodity. One obvious cost is that of storage. There is the cost of the ware-
house, security, insurance and so on. Another major cost is that of tied-up capital.
A million dollars worth of cars represents foregone interest that could be earned
on the money; the cost is even greater if the money for the inventory of cars has
to be borrowed. For some products there is a cost of spoilage (e.g. food, drugs),
while for other products there is cost associated with obsolescence (e.g. comput-
ers, software).

In the following problem description we consider a very elementary inventory
model.

7.4.2 Description

In the most elementary model, there is no uncertainty. Furthermore, demand is
assumed to be constant over time. The “lead time”, which is the time from placing
an order to the time at which it is delivered, is known and constant, and when the
order arrives, it arrives all at once. No shortages are allowed, and no quantity
discounts are available.

Because of these factors, a repetitive pattern emerges in which the order size,
denoted as Q, never varies. The order arrives just as the inventory has become
depleted, producing a “sawtooth” pattern as shown in the following diagram.



316 CHAPTER 7. GOAL PROGRAMMING AND NONLINEAR MODELS

Time

Inventory
On-Hand

Q

Average Inventory Level = Q/2

6

Order Arrives
6

Order Arrives

HH
H

H

HHH
HHH

HHH
HHH

HHHH

HHH
H

The order quantity Q is the only unknown of the problem. In developing this
model we will not use specific numbers for the coefficients, but instead will use
parameters, enabling us to find a general formula for the problem. A parameter
can change from problem to problem, but for a particular problem a parameter is
a known constant; they are distinguished from variables by putting them in small
letters. In this model there are four parameters, whose symbols are::

d annual demand
co the cost of placing an order
ch the cost of holding one unit in inventory for a year
cp the cost to purchase one unit

Given all the above, what value of Q minimizes the total cost?

7.4.3 Formulation
We begin by finding an inventory cost function f (Q), defined for Q > 0, which
has three components.
(1) First, there is the ordering cost. The number of orders per year is d

Q . Since the
ordering cost of each order is co, the annual ordering cost is

ordering cost = co
d
Q

(2) Secondly, there is the holding cost. As shown on the diagram, the average
number of units in inventory over the year is Q

2 . Since the cost to hold one unit in
inventory for a year is ch, the annual holding cost is

holding cost = ch
Q
2
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(3) Thirdly, there is the cost of purchasing. Each unit costs cp, and d units are
ordered in total, so the annual purchasing cost is simply

purchase cost = cpd

The total inventory cost function is therefore:

f (Q) = co
d
Q
+ ch

Q
2
+ cpd (7.1)

It is shown later using differential calculus that this function is minimized at:

Q =

√
2cod

ch

This formula is called the economic order quantity formula, or EOQ formula
for short. It appears in many places in business textbooks. As important as this
formula is, one needs to remember the idealistic assumptions on which it is based.

7.4.4 Numerical Example
A company uses 100,000 boxes of paper each year. It costs $50 to place an order.
To hold one box of paper in inventory for a year costs $2.50. A box of paper costs
$35. How big should each order be, and what is the total annual cost?

The parameters of the model are d = 100,000, co = $50, ch = $2.50, and
cp = $35. We use the EOQ formula as follows:

Q =

√
2cod

ch

=

√
2(50)100,000

2.50
=

√
4,000,000

= 2000

Each time an order is placed, it should be for 2000 boxes. The number of orders
per year is

d
Q

=
100,000

2000
= 50
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Note that cp is irrelevant as far as determining Q is concerned. However, it is
necessary for determining the value of f (Q).

f (Q) = co
d
Q
+ ch

Q
2
+ cpd

= 50
(

100,000
2000

)
+2.50

(
2000

2

)
+35(100,000)

= $2500+$2500+$3,500,000
= $3,505,000

Note that both the optimal ordering cost (which is $2500) and the optimal holding
cost (which is $2500) are the same. This is not a coincidence – this property that
these two costs are equal at the point of optimality is always true, and can help act
as a check on the numerical calculations.

7.5 Nonlinear Optimization: Introduction

In this section we examine models in which the objective function may be a non-
linear function of many variables, and we seek to either maximize or minimize
f (X1,X2, . . . ,Xn). This will often be subject to a set of linear or nonlinear con-
straints. To accomplish anything with this subject we will need to use the Solver
in Excel to solve the models.

The rest of this section is organized as follows.

1. For optional use, we present a quick review of single-variable differential
calculus. This includes the derivation of the EOQ (economic order quantity)
formula.

2. The use of the Excel Solver for nonlinear functions is introduced.

3. Several single-variable problems are modeled, and all are solved using the
Excel Solver.

4. Some examples of problems with multiple variables are discussed.
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7.5.1 Traditional Optimization (Optional)

Overview

The reader will have presumably completed a course in differential calculus, in
which an unconstrained function of a single variable is optimized. The process is:

1. Model the problem using a single variable X , to create a function f (X) that
we seek to optimize (i.e., maximize or minimize depending on the situa-
tion).

2. Using the rules of differentiation, find the first derivative f ′(X). Some basic
rules are that the derivative of f (X) = aXn is f ′(X) = naXn−1, and the
derivation of f (X) = u(X) + v(X) is f ′(X) = u(X) + v(X). Many other
rules are given on page 516.

3. Set f ′(X) = 0, and solve this to obtain solution X .

4. Find the second derivative f ′′(X).

5. Evaluate f ′′(X) at X = X . If f ′′(X) > 0, then the function has a local min-
imum at X = X . If f ′′(X) < 0, then the function has a local maximum at
X = X . If f ′′(X) = 0, then further testing is required to determine whether
this point is a local maximum, a local minimum, or neither of these. The
rules for further testing are presented on page 518.

We now use this procedure to solve for the EOQ formula.

Minimizing f (Q) to obtain the EOQ Formula

Earlier we considered a simple inventory model with the following total inventory
cost function:

f (Q) = co
d
Q
+ ch

Q
2
+ cpd (7.2)

Here we show that this function is minimized at:

Q =

√
2cod

ch
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Solution By solving this problem analytically, we obtain the solution for any
values of the parameters. This is an immensely useful result.

To find the value of Q which minimizes f (Q) we obtain the first derivative.

f ′(Q) =−cod
Q2 +

ch

2
+0

At f ′(Q) = 0,

−cod
Q2 +

ch

2
= 0

ch

2
=

cod
Q2

Q2 =
2cod

ch

Q =

√
2cod

ch

The second derivative of f (Q), which is the first derivative of f ′(Q), is

f ′′(Q) = −(−2)c0dQ−3 +0

=
2cod
Q3

> 0 for all Q > 0

Hence the function f (Q) is minimized at

Q =

√
2cod

ch
(7.3)

Limitations of the Analytical Approach

Analytically-based solution methods are limited as follows:

1. It requires a course in Calculus just to learn how to solve single-variable
problems.
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2. Sometimes, even single-variable problems are not solvable in a closed-form
expression. For example, suppose that we wish to minimize, for X > 0, the
following function:

f (X) =
10
X

+
eX/3

2
We find the first derivative to be:

f ′(X) =− 10
X2 +

eX/3

6

Seeking the stationary point of the function, we then set this equal to 0.

− 10
X2 +

eX/3

6
= 0

We are unable to obtain a closed-form expression for X .

3. Even when a single-variable example is solvable, to find the solution might
be long and tedious.

4. Learning how to analytically optimize a function of more than one vari-
able requires a second course in differential calculus, and solutions may be
difficult to obtain.

5. Adding constraints adds yet another level of complication.

While the parameter-based EOQ formula derived above had to be solved analyt-
ically, whenever we have a numerical example it can be solved using the GRG
algorithm which is built into the Excel Solver.

7.5.2 Using the Excel Solver
Suppose that we wish to minimize, for X > 0, the following function:

f (X) =
10
X

+
eX/3

2

There is no closed-form expression that can be obtained using analytical calculus,
so it needs to be solved numerically. We can solve the problem using the GRG
(Generalized Reduced Gradient) nonlinear algorithm which is built into the Excel
Solver.
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To do this we reserve a cell in Excel in which the Solver will write the com-
puted value of X . In another cell, we write the formula above, replacing X with its
cell reference. For example, we could use cell A1 for the value of X . Here we use
the Excel function EXP for finding the numerical value of eX . Then say in cell B1
we would write the formula in Excel’s syntax, which is:

= 10/A1+EXP(A1/3)/2

With nothing in cell A1, this will return an error message because the default
value of 0 in A1 causes a division by 0 problem. Typing any positive number in
A1 will eliminate this problem. Going to the Solver we need to set the solving
method to the “GRG Nonlinear” algorithm, rather than the simplex algorithm that
we have been using up till now. We ask the Solver to minimize objective cell
B1, with cell A1 being the variable cell. Doing this we obtain 3.986121 in cell
A1, and 4.396783 in cell B1. Hence f (X) is minimized at X = 3.986121, with
f (X) = 4.396783.

This is just the beginning of what using the GRG algorithm in the Solver
can accomplish. We can solve problems with many variables, and we can add
constraints too.

7.5.3 Multiple Variables and Constraints

The conditions for local optimality when there are multiple variables and con-
straints are very complex, and they will not be given here.9

While local optimality is necessary, it is not sufficient. For global optimality,
we need to be minimizing a convex function (or maximizing a concave function)
over a convex feasible region. A function is convex (concave) if the line segment
between any two points on the function lies entirely above (below) the function. A
region is convex if we can take any two points in the region, draw a line between
them, and all points on the line between the two points are also in the region. For
example, a sphere is a convex region. A doughnut, however, is not convex. A very
important special case happens when all the constraints are linear. Assuming that
a feasible region exists, it will be a convex region.

9These conditions were discovered by Kuhn and Tucker and published in 1951, but it was later
discovered that they were originally discovered (but not published in the open literature) by Karush
in 1939. These conditions are now known as the Karush-Kuhn-Tucker (or KKT) conditions. They
are described at https://en.wikipedia.org/wiki/Karush-Kuhn-Tucker conditions.

https://en.wikipedia.org/wiki/Karush-Kuhn-Tucker_conditions
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When the Excel Solver is used, it solves to find a local point of optimality, and
verifies that the conditions for local optimality are satisfied at that point. How-
ever, the Solver has no way of telling if the feasible region is convex, nor can it
tell if the function being optimized is convex (for minimization) or concave (for
maximization). Unless the user has knowledge about these things, the solution
found by the Solver cannot be guaranteed to be correct, except in the sense that
it’s better than all neighbouring points.

7.6 Single-Variable Applications

In this section we examine some business applications of single variable differen-
tial calculus. Each application begins with a description of a situation, and from
this we must obtain a function that needs to be maximized or minimized. The nu-
merical solution is then obtained by using the GRG algorithm in the Excel Solver.

7.6.1 Price Determination

Description

At a nominal cost of $1, an entrepreneur purchased an historic lighthouse that was
to be demolished. After paying $20,000 for renovations, he opened it to the public,
charging $2 per person. Attendance has averaged about 600 visitors per week. A
survey was taken of visitors to the area, some of whom visited the lighthouse, but
others who did not. The survey suggests that 200 customers would be lost each
week for each $1 per person increase in the price, and that 200 customers would
be gained each week for each $1 decrease in the price. It can be assumed that
the relationship between demand and price is linear, and that the cost to operate
the lighthouse is independent of the number of visitors. What price per person
maximizes the weekly revenue (and hence the operating profit)?

Formulation

The last sentence of the problem description suggests that we need to find a rev-
enue or profit function whose argument is the price per person. Hence,

Let P be the price charged per person.

We also need to know the weekly demand, which depends on the price. Hence,
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Let D be the weekly demand.

We now have two unknowns. We will write D in terms of P, and thereby
reduce the problem to one unknown. To find D in terms of P, think of D as being
its current value (which is 600) plus/minus a correction term for when P is not at
its current value (which is 2). This can be written either as

D = 600+200(2−P)

or as
D = 600−200(P−2)

Whichever form we use, it simplifies to

D = 1000−200P

The revenue is the demand multiplied by the price, or D×P. The $20,000
spent on the property is a sunk cost which is irrelevant to the question at hand.
Substituting for D, the product D×P becomes a function of P alone:

f (P) = (1000−200P)P

Solution using the Excel Solver

If we use cell A1 for the value of P, we would enter =(1000-200*A1)*A1 into
say cell B1, and then ask the Solver to maximize B1 by varying cell A1, with the
GRG algorithm being invoked. The solution is P = 2.5, with f (P) = 1250. At
this price per person of $2.50 the number of people who visit the lighthouse will
be

D = 1000−200(2.5)
= 1000−500
= 500

From the Solver, the revenue is $1,250. We can verify this by multiplying D and
P:

D×P = 500×$2.50
= $1250

The optimal solution is to charge $2.50 per person, thereby attracting 500 visitors
per week, for a weekly revenue of $1250. [This compares with a status quo weekly
revenue of 600×$2 = $1200.]
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7.6.2 The Optimal Speed of a Truck
Description

Excluding the cost of fuel, it costs $34 per hour to operate a truck (labour, tied-
up capital). The gasoline consumption (measured in litres per 100 kilometres)
depends upon the speed of the truck. We let X represent the speed of the truck in
km/hour. Where X ≥ 60 (when the truck is in its top gear), the fuel consumption
has been measured to be 43 L/100 km at 60 km/h, increasing by 0.3 L/100 km for
each 1 km/h increase in the speed above 60 km/h. Gasoline costs $1.40 per litre.
The speed limit is 100 km/hour. What speed minimizes the total cost (per given
distance) of operating the truck?

Formulation

The easiest way to proceed is to consider the cost of a 100 km trip. The fuel cost is
the price per litre (which is $1.40) multiplied by the number of litres consumed (a
function of the speed X). The fuel consumption (in L/100 km) is 43+0.3(X−60).
Hence the fuel cost is 1.4(43+0.3(X−60)). The non-fuel cost is $34 per hour. At
a speed of X km/hour, the time required to drive 100 km is 100/X hours. Hence
the non-fuel cost while driving the 100 km is $34 per hour multiplied by 100/X
hours, which is 34(100)/X . Hence the total cost for a 100 km trip is

f (X) = 1.4(43+0.3(X−60))+34(100)/X

This expression could be simplified to f (X) = 35+ 0.42X + 3400/X . However,
the first expression preserves the original data, so if for example the price per litre
changes, we easily see how to modify the expression.

Implicit in this relationship is that the speed of the truck cannot be negative
(X ≥ 0). Moreover, the truck is assumed to be in top gear (X ≥ 60). This makes
the requirement that X be ≥ 0 redundant, though the usual practice is to state it
explicitly nevertheless. Also, we will assume that the speed limit will be obeyed
(X ≤ 100). Therefore, this is a case of constrained optimization:

minimize f (X) = 1.4(43+0.3(X−60))+34(100)/X
subject to

X ≥ 0
X ≥ 60
X ≤ 100
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Solution using the Excel Solver

Letting the value of X be in cell A1, we could enter the cost into say cell B1, and
we could put the 60 and the 100 into cells C1 and D1. In cell B1 the formula
would be =1.4*(43+0.3*(A1-60))+34*100/A1. In the Solver we would
minimize cell B1 by varying cell A1, subject to the constraints A1 ≥ C1 and A1
≤ D1. The theoretical solution is X = 89.9735 with f (X) = 110.578. The truck
should therefore be driven at about 90 km/hour.

7.6.3 Optimal Level of Production
Description

The selling price of an item is $6 per unit. The units are made in a factory which
has three types of costs: a daily fixed cost of $8000; a variable cost of $2 per
unit; and a congestion cost which depends on the level of production. The plant
has a physical capacity of 9,999 units per day; at 10,000 units per day the cost is
infinite because the capacity has been exceeded. Defining X to be the number of
units produced each day, someone has gone into the plant to determine the daily
congestion cost, which is:

X
10,000−X

0≤ X ≤ 9999

We wish to determine the daily production level which maximizes the profit.

Formulation

The daily profit is the daily revenue minus the daily cost. From the information in
the problem description we obtain:

f (X) = 6X−
(

8000+2X +
X

10,000−X

)
The problem is modelled as:

maximize f (X) = 6X−
(

8000+2X +
X

10,000−X

)
subject to

X ≥ 0
X ≤ 9999
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Solution using the Excel Solver

If we reserve cell A1 for X , then the following formula in cell B1 represents the
function: =6*A1-(8000+2*A1+A1/(10000-A1)). We can put the 9999 in
say cell A2, and then ask the Solver to maximize cell B1, with A1 as the only
variable cell, and add the constraint A1 ≤ A2. Clicking on the box for non-
negativity, and selecting the GRG Nonlinear algorithm, we obtain 9950 in cell
A1, and 31,601 in cell B1. Hence by producing 9,950 units per day, we maximize
the profit, which will be $31,601.

7.6.4 An Optimal Route for an Oil Pipeline

Description

An oil company wishes to build a pipeline from an offshore oil well to a refinery
located on the coast. The coastline runs north-south, with the ocean lying to the
east. The oil well is located 120 km south and 80 km east of the refinery. The
pipeline will be laid straight through the water, will bend at the point at which
it comes ashore, and then travel straight along the coast on land to the refinery.
It costs $200,000/km to build a pipeline on land; it costs $800,000/km to build a
pipeline at sea. [If the costs were the same, they would simply build a pipeline
from the well to the refinery through the water.] We wish to determine the location
at which the pipeline should come ashore so that the total cost of building the
pipeline is minimized.

Formulation

At the outset, it is helpful to draw a picture of the situation. Of course, we cannot
accurately mark the spot at which the pipeline comes ashore, since that is the
unknown of the problem, but this does not matter.

The locations and distances are as shown in the following diagram, with the
proposed route of the pipeline shown as a thick line.



328 CHAPTER 7. GOAL PROGRAMMING AND NONLINEAR MODELS

A
X

1
2

0
km

80 km

Oil Well

Refinery

Land Ocean

N

We are seeking the location of the point where the pipeline comes ashore. This
can be specified by defining reference point A as a point which is due south of the
refinery, and due west of the oil well, and then we are seeking a point which is X
km north of point A. [An alternative approach is to let Y run due south from the
refinery. Clearly, X +Y = 120.]

The length of the pipeline on land is 120−X km. To find the length at sea,
we use the theorem of Pythagoras. On the diagram we can see a triangle with a
right angle at the point A, and whose other vertices lie X km north of A (where
the pipeline comes ashore) and 80 km east of A (the location of the oil well). The
hypotenuse has a length

√
X2 +802 km, and is the length of the pipeline at sea.

The cost of the pipeline is the cost on land plus the cost at sea. The cost on
land is the per-km cost of $200,000 multiplied by the number of km (which is
120−X); the cost at sea is the per-km cost of $800,000 multiplied by the number
of km at sea (which is

√
X2 +802). The total cost of the pipeline, in dollars, is

f (X) = 200,000(120−X)+800,000
√

X2 +802

Note that we could have written f (X) in thousands of dollars, which would have
made the per-km cost coefficients 200 and 800; we could have written f (X) in mil-
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lions of dollars, which would have made the coefficients 0.2 and 0.8. Whichever
we do, we will eventually obtain the same value for X .

Solution using the Excel Solver

Here we use the Excel function SQRT for finding the square root of a non-negative
number. At a minimum, we want Excel to calculate the optimal values of X and
f (X). However, using column A for labels, we can put X into cell B1, the length
of the pipeline on land into cell B2 (=120 − B1), and the length of the pipeline
at sea into cell B3 (=SQRT(B1ˆ2+80ˆ2)). The objective function in cell B5 is
=200000*A2+800000*A3. Displaying the formulas we have:

1
2
3
4
5

A B
Distance X (km)
Pipeline on land =120-B1
Pipeline at sea =SQRT(B1^2+80^2)

Total Cost =200000*B2+800000*B3

With B1 ≥ 0 we then ask the Solver to minimize B5 with B1 being the only
variable cell. (The values in B2 and B3 will change, but they are not variable
cells.) We obtain:

1
2
3
4
5

A B
Distance X (km) 20.65591117
Pipeline on land 99.34408883
Pipeline at sea 82.62364472

Total Cost $85,967,733.54

7.7 Applications with Multiple Variables

7.7.1 Tunneling in an Underground Mine
A mining company wishes to connect three points lying on the same elevation.
Places are referenced by a grid system where (a, b) is a point located a metres east
and b metres north of a standard point. The three points are located at (30, 240),
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Figure 7.5: Tunnels from Three Points to a Junction Point

(160, 50), and (200, 280). They know that to minimize the construction cost of
the tunnels they need to find a point lying in the interior of the triangle defined
by the first three points. This point will be the junction point of the three tunnels.
They wish to know the location of this point, and the total distance of the tunnels.

First we draw a picture of the situation. We can plot the three defined points,
but we have to make an educated guess as to the location of the junction point
(X ,Y ), which of course we seek to determine. The picture is shown in Fig-
ure 7.7.1.

Three tunnels need to be made from point (X ,Y ) to the three given points.
Each tunnel can be thought of as the hypotenuse of a right-angled triangle. One
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of these hypotenuses is shown between Point 1 at (30,240) and the point to be
determined, (X ,Y ); the other two are similar. By using the theorem of Pythagoras
the distance to each point from (X ,Y ) is:

Point Distance

(30,240)
√

(30−X)2 +(240−Y )2

(160,50)
√

(160−X)2 +(50−Y )2

(200,280)
√
(200−X)2 +(280−Y )2

Therefore the function we wish to minimize is the sum of these three distances.
Namely

f (X ,Y ) =
√

(30−X)2 +(240−Y )2 +
√

(160−X)2 +(50−Y )2

+
√
(200−X)2 +(280−Y )2

We will solve this using the Excel Solver. An easy way to write the function
is to make it the sum of three tunnel lengths, where, after a writing a formula to
calculate the distance from point 1 to (X ,Y ), we can simply copy the formula for
the other two points. Doing this we obtain:

1

2
3

4

5

6

7

8

A B C D E

X Y

Point 1 30 240 Tunnel 1 =SQRT((B4‐$B$2)^2+(C4‐$C$2)^2)

Point 2 160 50 Tunnel 2 =SQRT((B5‐$B$2)^2+(C5‐$C$2)^2)

Point 3 200 280 Tunnel 3 =SQRT((B6‐$B$2)^2+(C6‐$C$2)^2)

Total =SUM(E4:E6)

Invoking the GRG Nonlinear algorithm on the Solver, in which we minimize cell
E8 with the variable cells being B2:C2, we obtain:
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1

2
3

4

5

6

7

8

A B C D E

X Y

124.2374 210.4101

Point 1 30 240 Tunnel 1 98.7738

Point 2 160 50 Tunnel 2 164.3483

Point 3 200 280 Tunnel 3 102.8724

Total 365.9944

We find the optimal location to be at about (124.24, 210.41) with a total dis-
tance of 365.99 metres.

This type of problem is called a Steiner tree problem. The three point problem
has an easy geometric solution. See https://en.wikipedia.org/wiki/Steiner tree problem.

7.7.2 An Example from Finance
The manager of a portfolio can place the money in the shares of publicly traded
companies, in a money-market fund, or in the government bond market. Over the
past several years, the average returns have been 1.5%, 0.8%, and 1.1%, respec-
tively. They know the covariance of the returns, which, in the order shares/money-
market/bonds is:  4.2 1.7 1.4

1.7 0.8 0.6
1.4 0.6 0.5


We use the symbol C for this covariance matrix. The manager wants to form a
portfolio of minimum risk, with an expected return of at least 1.2%. We define
Xi to represent the fraction of the portfolio invested in shares (i = 1), the money-
market (i = 2), or government bonds (i = 3). The objective is to minimize:

XCXT = (X1,X2,X3)

 4.2 1.7 1.4
1.7 0.8 0.6
1.4 0.6 0.5

  X1
X2
X3


We could expand this by hand, using matrix multiplication twice, first to find
CXT , and then again to find XCXT . Doing this we find

f (X1,X2,X3) = 4.2X2
1 +0.8X2

2 +0.5X2
3 +2(1.7)X1X2 +2(1.4)X1X3 +2(0.6)X2X3

https://en.wikipedia.org/wiki/Steiner_tree_problem
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However, rather than doing this by hand we can ask Excel to do the matrix
multiplication for us. The weights must sum to 1, hence the entire model is:

minimize XCXT

subject to
All invested X1 +X2 +X3 = 1

Return 1.5X1 +0.8X2 +1.1X3 ≥ 1.2

X1,X2,X3 ≥ 0

Using the Solver

This example is put into Excel, with the range C2:E2 reserved for the values of
the variables, and cell A3 reserved for the objective function value. Because the
constraints are linear, we can calculate the numerical value of the left-hand side of
each constraint as we did before, using the SUMPRODUCT function. However,
the objective function is too complicated for this approach. There are two possible
approaches

1. We could enter the expression

f (X1,X2,X3) = 4.2X2
1 +0.8X2

2 +0.5X2
3 +3.4X1X2 +2.8X1X3 +1.2X2X3

into cell A3 as

=4.2*C2ˆ2+0.8*D2ˆ2+0.5*E2ˆ2+3.4*C2*D2+2.8*C2*E2+1.2*D2*E2

This approach is simple for this little example, but had there been say ten
possible investments calculating all these terms would have been tedious
and prone to error.

2. The other approach is to enter the covariance matrix into Excel, and then let
Excel find XCXT . To do this we need to use the TRANSPOSE command,
and then use the MMULT command twice (see Chapter 1 for information
about these commands).
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1
2
3
4
5
6
7
8

A B C D E F G H
X1 X2 X3

OFV 0 0 0
=MMULT(C2:E2,G3:G5) 4.2 1.7 1.4 =TRANSPOSE(C2:E2) =MMULT(C3:E5,F3:F5)

=D3 0.8 0.6 =TRANSPOSE(C2:E2) =MMULT(C3:E5,F3:F5)
=E3 =E4 0.5 =TRANSPOSE(C2:E2) =MMULT(C3:E5,F3:F5)

Constraints
All Invested 1 1 1 =SUMPRODUCT($C$2:$E$2,C7:E7) = 1
Return 1.5 0.8 1.1 =SUMPRODUCT($C$2:$E$2,C8:E8) >= 1.2

In using the Solver, we need to click on “Make Unconstrained Variables Non-
Negative”, and set the solving method to “GRG Nonlinear”. Solving we obtain:

1
2
3
4
5
6
7
8

A B C D E F G H
X1 X2 X3

OFV 0.25 0 0.75
1.06875 4.2 1.7 1.4 0.25 2.1

1.7 0.8 0.6 0 0.875
1.4 0.6 0.5 0.75 0.725

Constraints
All Invested 1 1 1 1 = 1
Return 1.5 0.8 1.1 1.2 >= 1.2

The recommendation is for the manager to invest 25% of the portfolio in shares
of publicly-traded companies, and to invest the other 75% in government bonds.

7.8 Summary
Problems with multiple objectives can be modeled using deviational variables. All
goal programming models involve minimization. One approach is to weight the
deviational variables using a single objective function. We then obtain a single
linear optimization problem, which we can solve using the Excel Solver. The
other approach is preemptive goal programming, in which the goals are ranked
in order of importance. Starting with the most important goal, a sequence of
linear programming models is solved. In each, we are minimizing one deviational
variable at a time, subject to all system constraints, and all constraints associated
with higher-ranked goals.
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We modeled a simple inventory system, which was solved using analytical
calculus to obtain the EOQ formula, We then saw the use of the GRG algorithm
in the Excel Solver, which can not only solve any numerical problem involving a
single variable, but can also handle multiple variables and constraints.

We examined a variety of applications of single-variable differential calcu-
lus. We went on to consider some problems which cannot be reduced to a single
variable.

7.9 Problems for Student Completion

7.9.1 Restaurant Location
This example illustrates non-preemptive goal programming.

Some entrepreneurs wish to establish a restaurant in a central location so that
it will serve three suburbs. On a rectangular grid with axes labelled X1 (horizontal)
and X2 (vertical), the centres of the three suburbs are located at (1,2), (6,18), and
(12,8). All roads run east-west (parallel with the X1 axis) or north-south (parallel
with the X2 axis). The distance between any two points is therefore rectilinear.
For example, the distance between the centres of suburbs 2 and 3 is | 12−6 |+ |
8−18 |= 6+10 = 16.

(a) Formulate the restaurant location problem as a goal programming model.

(b) Use the Excel Solver to determine the best location for the restaurant.

(c) Now suppose that suburb 1 is twice as large as suburb 2, and three times as
large as suburb 3. Write the new model, and solve it using the Excel Solver.

7.9.2 Moose Licences
This example illustrates preemptive goal programming.

A licence to shoot a moose costs $100 for residents and $800 for non-residents.
The government must decided how many licences to issue in both categories. De-
mand for resident licences appears to be unlimited; indeed, they would often have
to hold a lottery to decide who received one. Demand for non-resident licences
is about 10,000 per year. The government will not issue more than 35,000 moose
licences per year. At least 75% of all licences must go to residents.

(a) If the objective is to maximize revenue, find the optimal solution graphically.
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(b) Now suppose that the government wants annual revenues from the sale of
moose licences to be at least $10,000,100. Verify that there is no feasible
solution.

(c) Now suppose that the demand for up to 10,000 non-resident licences is part
of a system constraint. The goal priorities in descending order of importance
are (i) earn at least $10,000,100 in revenue (ii) issue at least 75% of licences
to residents, and (iii) limit the licences to 35,000. Solve the revised problem
graphically.

7.9.3 Admission Prices
A museum charges $8 per person for admission. For each visitor, there is a cost
of $3 for cleaning, insurance, security, and so on. In addition, there is an annual
overhead cost of $460,000. Currently 90,000 people per year visit the museum.

(a) How much money is the museum losing each year?

The Board of Governors is considering a change in the admission price. For
each $1 increase/decrease to the price, the number of visitors per annum will
go down/up by 12,500.

(b) What admission price maximizes the profit, and what is this optimal profit?

(c) Suppose that the admission charge must, for practical reasons, be priced using
dollars and quarters only. What are the optimal price and profit now?

7.9.4 Rescue in the Water
A lifeguard is watching over a beach. The lifeguard is in a tower located on the
shoreline (which runs east-west), and sees a person in trouble in the water. The
victim is 90 metres from the closest point on the shoreline, and this point on the
shoreline is 170 metres east of the tower.

The lifeguard can run along the beach at a rate of 8 metres per second, and can
swim in the water at a rate of 3 metres per second. The lifeguard must choose a
point on the shoreline to which he will run, and from which he will swim to the
victim, so that the total time to reach the victim is minimized.

(a) Draw a picture of this situation.

(b) Find the lifeguard’s optimal route, and the optimal time.
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7.9.5 Inventory
Note: This question requires analytical calculus; it cannot be done using the Excel
Solver.

In an inventory system the warehouse must be as large as the maximum amount
of the inventory. If the warehouse is the predominant cost, then it may be appro-
priate to say that the cost of holding inventory should be based not on the average
inventory level, but on the maximum inventory level. Based on this modification
to the standard EOQ model, derive a modified EOQ formula.

7.9.6 Tunneling in an Underground Mine
A mining company wishes to connect three points lying on the same elevation.
Places are referenced by a grid system where (a, b) is a point located a metres east
and b metres north of a standard point. The three points are located at (110, 250),
(190, 120), and (230, 270). They know that to minimize the construction cost of
the tunnels they need to find a point lying in the interior of the triangle defined
by the first three points. This point will be the junction point of the three tunnels.
They wish to know the location of this point, and the total distance of the tunnels.

(a) Draw a picture of this situation, showing hypothetically where the junction
point might be placed, and draw lines to represent the tunnels.

(b) Formulate this problem.

(c) Find the numerical solution using the Excel Solver.

7.9.7 Asset Allocation
A wealthy couple have three children named Xena, Yuri, and Zoe. To give their
children a lesson in entrepreneurship, the parents have decided to invest a total of
$35,000. They asked their children what they could accomplish if they were given
some of the money. Xena said, “Whatever you give me, I will return not only the
principal but the square root of the principal as well.” (For example, if she were
given $1600, she would return 1600+

√
1600 = 1640 dollars.) Yuri thought that

he could do better than his younger sister: “I’ll return the principal plus twice the
square root of the principal”, he boasted. Their older sister Zoe felt that she had
to do even better: “I’ll return the principal plus three times the square root of the
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principal.” The parents wonder how the $35,000 should be distributed to their
children, so as to maximize the total net return.

(a) Formulate a model for this problem.

(b) Obtain the solution using the Solver.



Chapter 8

Decision Analysis I

Decision modeling so far in this course has been in a deterministic context. Now
we present some ways of modeling and solving problems which involve probabil-
ities. Knowing the basic concepts of probability is required; these are explained
in Appendix E.1.

8.1 Payoff Matrices

8.1.1 Introduction
The simplest situation involving decision making under uncertainty has the fol-
lowing attributes:

• There is one decision; the decision maker must choose one of several alter-
natives.

• There is one event; one of several possible outcomes will occur.

• For each combination of alternative and outcome we can calculate the pay-
off (which may be negative) to the decision maker.

The order is very important: the decision must precede the event. First an
alternative is chosen, and then an outcome occurs. Here are some common exam-
ples:

1. At 8 a.m. you must decide whether or not to carry an umbrella; later that
day you find out whether or not it rains.

339
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2. Before a hockey game, you decide whether or not to place a bet on the
outcome; and at the end of the game you find out which team has won.

8.1.2 Example

Problem Description

An amateur theatre company wishes to mount a play. A three night run is planned,
and a particular play has been chosen. They have already spent or have committed
to spend $2500 for such things as costumes, makeup, royalties to the copyright
owners, and so on. They are definitely going ahead with the play; the only decision
they must make is where to hold it. Small, medium, and large theatres are available
for rent which hold 100, 400, and 1200 people respectively. Three nights rent at
each theatre would cost $600, $1800, and $4700 respectively. They must make a
commitment to one of these theatres several weeks before the run begins.

The theatre company has already decided to price all the tickets at $10.00
each.1 Because everyone in the theatre company is a volunteer, they can price the
tickets at an affordable price. All they care about from a financial point of view is
to at least cover their expenses over the long term.

The demand for the play is uncertain until the run begins. Demand is heavily
influenced by the critics’ reviews. The critics will attend a dress rehearsal the night
before the first performance, and their opinions will be printed and broadcast in
the media the next morning.

The directors of the company know from experience that demand for plays
falls into four broad categories of interest: fringe; average; great; and heavy. We
will assume that the demand is spread equally across the three nights. The total
number of people who wish to see a play over a three-night run is typically 250
for fringe, 800 for average, 2300 for great, and 4500 for heavy.

These are demand levels, not necessarily the number of tickets sold. For ex-
ample, if a play sells every seat in a 250 seat theatre for three nights, and if another
50 people were wait-listed for tickets but could not obtain them, then 750 tickets
were sold, but the demand was for 800 tickets.

The demand is an event in which one of four outcomes will occur. To estimate

1To keep things simple, we often ignore taxes when developing models for educational pur-
poses. If you want to think of ticket prices as including taxes imposed by the government, then
imagine that we are dealing with the net after taxes revenue, for example the tickets could be
$12.50 each and from this they must pay $2.50 per ticket sold in taxes, leaving them with a net
revenue of $10 per ticket sold.
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the probabilities of these four outcomes, the theatre company could look at the
historical data for plays of this type with tickets sold in this price range. Suppose
that of one hundred plays in the past, the interest attracted was twenty for fringe,
seventy for average, nine for great, and one for heavy. We would then estimate
the chance of the next play attracting fringe interest as

P(fringe interest) =
20
100

= 0.20

Continuing in this manner we would estimate the probabilities for average, great,
and heavy as 0.70, 0.09, and 0.01 respectively.

Using historical data to estimate probabilities ignores such factors as changing
consumer tastes and economic conditions, but we have to start somewhere. Using
these numbers we will obtain one conclusion after solving the model, but another
set of numbers will often lead to a different conclusion.

This model has been kept simple in that everything has been decided except
one thing – which theatre to rent. This is the problem which we shall now solve.

Model Formulation

In all models with decision making under uncertainty, we must define the deci-
sions, their alternatives, the events, and their outcomes. Some textbooks stress the
use of symbols for this purpose, however another approach is to use words only,
and then define a shortcut word to use in place of each longer phrase.

For both approaches we have the following:

They must decide where to hold the play. The alternatives are to rent a small
theatre with 100 seats, or rent a medium-sized theatre with 400 seats, or rent a
large theatre with 1200 seats. The event is the demand for tickets. The possible
outcomes are as follows: there is fringe interest with demand for 250 tickets; there
is average interest with demand for 800 tickets; there is great interest with demand
for 2300 tickets; or there is heavy interest with demand for 4500 tickets.

Because it takes a lot of space to write all these words every time we wish
to refer to them, we need a shortcut form. In the method of using symbols, the
decision is symbolized with the letter D, and the three alternatives have subscripts
on the letter A, making them A1, A2, and A3. The event is symbolized with the
letter E, and its four outcomes have subscripts on the letter O, making them O1,
O2, O3, and O4.

The alternative and outcome symbols mean the following:
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Alternative Cost
A1 rent a small theatre with 100 seats $600
A2 rent a medium-sized theatre with 400 seats $1800
A3 rent a large theatre with 1200 seats $4700

Outcome Probability
O1 there is fringe interest; the demand is for 250 tickets 0.20
O2 there is average interest; the demand is for 800 tickets 0.70
O3 there is great interest; the demand is for 2300 tickets 0.09
O4 there is heavy interest; the demand is for 4500 tickets 0.01

The other approach is to use one word (or a very short phrase) to mean the
entire long phrase. Such words must be unique. For example, we cannot use
“medium” to refer to both a medium-sized theatre and to average interest. Using
this approach we could use the following words:

Alternative Cost
small rent a small theatre with 100 seats $600

medium rent a medium-sized theatre with 400 seats $1800
large rent a large theatre with 1200 seats $4700

Outcome Probability
fringe there is fringe interest; the demand is for 250 tickets 0.20

average there is average interest; the demand is for 800 tickets 0.70
great there is great interest; the demand is for 2300 tickets 0.09

heavy there is heavy interest; the demand is for 4500 tickets 0.01

Whichever method is used, the important thing is that the person making the
model must understand what the alternatives and outcomes are.

The only other pieces of information we need from the problem description is
that the revenue is $10 per ticket sold, and that the play runs for three nights. The
other expenses such as costumes, makeup, royalties to the copyright owners, and
so on are what are called sunk costs. A sunk cost is money which is either already
spent or has already been committed, and is therefore irrelevant to the decision.
Indeed, even if these fixed expenses (which total $2500) were not already com-
mitted, they would not affect the decision in this example, because all alternatives
would contain these same expenses.
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Model Solution

There are three alternatives, and four outcomes, hence there are three times four
equals twelve situations which need to be evaluated. First we see what happens if
a small theatre is rented, and the play only attracts fringe interest. The 100-seat
small theatre can hold 300 people over three nights, but only 250 people want to
see the play, so only 250 tickets are sold. The net revenue from the ticket sales
is therefore $10 times 250 = $2500. We can now find what is often called the
“profit”, but we define a new term payoff, which can mean profit, cost, or revenue
depending on the context. The payoff is found by subtracting the $600 rent from
the $2500 from the sales of tickets, i.e. $1900.

If a small theatre is rented, but the demand turns out to be average, then there
are more willing customers (800) than there are seats (300). The number of ticket
sales is therefore just 300. For any situation, we can say that the number of tickets
sold is the capacity of the theatre (over three nights), or the demand for tickets,
whichever is less. The payoff is

$10(300)−$600 = $2400

We do not need to analyze in detail what happens if more potential customers
(great or heavy) show up when only a small theatre has been rented; no more
tickets can be sold, so the payoff will remain at $2400.

Now suppose that a medium-sized theatre is rented at a cost of $1800. With
a 400 seat capacity, a three-night run gives a maximum sales capacity of 1200
tickets. There’s plenty of space with fringe or average demand, but the capacity
of 1200 is reached with great or heavy demand. With fringe interest the payoff is:

$10(250)−$1800 = $700

With average interest the payoff is:

$10(800)−$1800 = $6200

With either great or heavy demand the payoff is

$10(1200)−$1800 = $10,200

If a large theatre with 1200 seats is rented for $4700, the three-night capacity is
3600 people. This is sufficient for all but heavy demand. The number of tickets
sold will equal the demand if interest is fringe, average, or great, and will equal
the total capacity (3600) if there is heavy demand. Hence we have:
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Outcome fringe average great heavy
3-Night Capacity 3600 3600 3600 3600

Demand 250 800 2300 4500
# of Tickets Sold 250 800 2300 3600

Net Ticket Revenue $2500 $8000 $23,000 $36,000
Rent $4700 $4700 $4700 $4700

Payoff −$2200 $3300 $18,300 $31,300

The preceding calculations do not need to be always explicitly written out as
we have done here. Often the calculations can be done on a calculator, with just
the final payoffs being written down. Or, as we soon shall see, we can use a
spreadsheet to do the calculations. Of course, to do this by any means we must
understand how the final payoff is derived. In all twelve cases, the payoff is com-
puted as:

payoff = ticket revenue − rent
= ticket price × number of tickets sold − rent
= ticket price × min{ three-night capacity, demand } − rent

All of this information can be conveniently summarized in what is called a
payoff matrix (also called a payoff table). In doing this by hand, just one payoff
matrix is drawn. However, to help explain it, we draw it once with just the borders,
then with the main body filled in, and then with the right-hand side filled in.

In the main body of the payoff matrix, each row represents an alternative, and
each column represents an outcome. Labels for the alternatives appear on the left-
hand side, and labels for the outcomes appear on the top. The final row lists the
probabilities of the outcomes. The final column is reserved for the expected value
of each alternative – this will be explained shortly.

It is helpful if we put the theatre capacity (over three nights) and the cost of
the rent next to the name of the alternative, and the demand as a number next to
the names for the four levels of demand. Doing this the payoff matrix begins as:

Demand for Tickets
Theatre 3-Night Fringe Average Great Heavy Expected
Size Capacity Rent 250 800 2300 4500 Value
Small 300 $600
Medium 1200 $1800
Large 3600 $4700

Probability 0.20 0.70 0.09 0.01
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Using the formula “=ticket price × min{ three-night capacity, demand } −
rent”, each payoff is calculated and put into the table. If we are doing these calcu-
lations using a calculator, we would look for shortcuts like noticing the repetition
of the “2400” for the first alternative.

We of course have already done these calculations by hand, and hence we have
(dropping the dollar signs):

Demand for Tickets
Theatre 3-Night Fringe Average Great Heavy Expected
Size Capacity Rent 250 800 2300 4500 Value
Small 300 $600 1900 2400 2400 2400
Medium 1200 $1800 700 6200 10,200 10,200
Large 3600 $4700 −2200 3300 18,300 31,300

Probability 0.20 0.70 0.09 0.01

If we wish to use a spreadsheet, we will input the theatre size, and let the 3-
night capacity be found as part of the formula, which is entered once and then
is copied. Besides doing the calculations, using a spreadsheet makes it easy to
change colours and/or fonts to highlight information. The real advantage, how-
ever, is that it easily allows us to see what happens when some of the information
is changed.

In spreadsheet form we begin with:

1

2
3

4

5

6

7

A B C D E F G H

Price Demand for Tickets

Theatre Number $10 Fringe Average Great Heavy Expected
Size of Seats Rent 250 800 2300 4500 Value

Small 100 $600

Medium 400 $1,800

Large 1200 $4,700

Probability 0.20 0.70 0.09 0.01

We want to make a formula in cell D4 which we can copy to the range D4:G6.
The number of seats available is in cell B4, hence the 3-night capacity is 3*B4.
The demand is in cell D3, and the cost of the rent is in cell C4. For some of the
copied cells, we need to use an absolute rather than a relative cell address, which
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is accomplished by placing a dollar sign in front of the column or row which needs
to be frozen. Hence we must use a dollar sign to freeze the ‘B’ in ‘B4’, the ‘3’ in
‘D3’, and the ‘C’ in ‘C4’. For cell C2, which contains the ticket price, we need a
dollar sign in front of both the C and the 2 to freeze both the column and the row.
The formula to be placed in cell D4 is therefore:

=$C$2*MIN(3*$B4,D$3)-$C4

With the numbers in the main body of the payoff matrix being calculated by
the spreadsheet (commas will not appear unless special formatting is used) we
have:
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Price Demand for Tickets

Theatre Number $10 Fringe Average Great Heavy Expected
Size of Seats Rent 250 800 2300 4500 Value

Small 100 $600 1,900 2,400 2,400 2,400

Medium 400 $1,800 700 6,200 10,200 10,200

Large 1200 $4,700 ‐2,200 3,300 18,300 31,300

Probability 0.20 0.70 0.09 0.01

There is an expected value associated with each alternative. Recall from hav-
ing studied random variables that in general, if there are n outcomes, and the
probability of outcome i is pi, and the payoff of outcome i is xi, then the expected
value is defined as:

E(X) =
n

∑
i=1

pixi (8.1)

The current example has four outcomes. The expected value associated with rent-
ing a large theatre is

EV(large) = 0.20(−2200)+0.70(3300)+0.09(18,300)+0.01(31,300)
= −440+2310+1647+313
= 3830

What this figure means is that if the theatre company were to face the same situ-
ation many times, and if they were to choose a large theatre each time, then over
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time their profits/losses would average out to $3,830. The actual payoff on a par-
ticular play will be either −$2200, or $3300, or $18,300, or $31,300. Hence the
expected value is none of the actual values; it is simply a long-term average value.

When some of the outcomes are the same, as occurs for the medium-sized
theatre alternative, we can factor the numbers if we wish:

EV(medium) = 0.20(700)+0.70(6200)+(0.09+0.01)(10,200)
= 140+4340+1020
= 5500

The small theatre alternative is even easier:

EV(small) = 0.20(1900)+(0.70+0.09+0.01)(2400)
= 380+1920
= 2300

We have shown these calculations in detail because the material is new, but from
now on we will simply calculate the numbers and write only the final answer.
Filling in the numbers in the Expected Value column we have:

Demand for Tickets
Theatre 3-Night Fringe Average Great Heavy Expected
Size Capacity Rent 250 800 2300 4500 Value
Small 300 $600 1900 2400 2400 2400 $2300
Medium 1200 $1800 700 6200 10,200 10,200 $5500
Large 3600 $4700 −2200 3300 18,300 31,300 $3830

Probability 0.20 0.70 0.09 0.01

Now let us see how to do this using a spreadsheet. In cell H4, we wish to write
a formula which will find the “dot product” of the probabilities in D7:G7 with the
payoffs in D4:G4. One way to do this (ignoring absolute cell addresses for the
moment) is:

=D7*D4+E7*E4+F7*F4+G7*G4

Because we only have four outcomes, we could do it this way. However, this
approach would be very cumbersome if we had say twenty outcomes. Therefore,
we will instead use the spreadsheet SUMPRODUCT function.
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The SUMPRODUCT function finds the dot product of the numbers in range1
with the numbers in range2, where both ranges are rows (or columns) of equal
size. The syntax is SUMPRODUCT(range1,range2). We must put absolute
cell addresses on row 7 (the probabilities), hence the formula to be placed in cell
H4 is:

=SUMPRODUCT(D$7:G$7,D4:G4)

This formula is copied into cells H5 and H6. We obtain:
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Price Demand for Tickets

Theatre Number $10 Fringe Average Great Heavy Expected
Size of Seats Rent 250 800 2300 4500 Value

Small 100 $600 1,900 2,400 2,400 2,400 2,300

Medium 400 $1,800 700 6,200 10,200 10,200 5,500 Best

Large 1200 $4,700 ‐2,200 3,300 18,300 31,300 3,830

Probability 0.20 0.70 0.09 0.01

The formatting of the numbers in the range H4:H6 is a matter of individual
preference. For example, any of 2300, $2300, or $2300.00 could be used.

On average, the best alternative is the one with the highest expected value. In
the next section, we shall look at alternate decision criteria, but in the absence
of reason to the contrary the preferred criterion for decision making under uncer-
tainty will be to choose the alternative with the highest expected value.

Recommendation

For the example at hand, the best alternative is clearly to rent a medium-sized
theatre, with an expected payoff of $5500. As we said in the introductory section,
the developer of the model must make the recommendation clear to the customer
of the model. In this example, the customer is the theatre company. They might
not be familiar with payoff matrices or spreadsheets, so we focus on giving the
recommendation - the spreadsheet itself is just an appendix. For the sake of this
course, let’s say that the term “expected payoff” can be used; in real life more
explanation would be required. Hence within this course we would write the
recommendation as:
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Recommendation Rent a medium-sized theatre, with an expected payoff of
$5500 before the deduction of $2500 in fixed expenses, or $3000 after making
this deduction.

However, in giving a recommendation to the theatre company in real-life,
something along the following lines might be appropriate:

To: The Management Committee, Amateur Theatre Group
From: J. Blow, Decision Modeling Consulting Company
Subject: Theatre Rental

Thank you for this opportunity to assist your theatre company, which I am
happy to provide on a pro-bono basis. After studying the three alternatives, I
conclude that renting a medium-sized theatre would be best. Based on the as-
sumptions which you provided, the profit (before deducting fixed expenses such
as costumes, makeup, and royalties to the copyright owners) will be either $700,
$6200, or $10,200; if a situation like this were to be repeated many times the
profit would average out to $5500. After deducting the $2500 in fixed expenses
the company will be left with a profit (loss) of ($1800), $3700, or $7700; if a
situation like this were to be repeated many times the profit would average out to
$3000. A spreadsheet which I used to make the gross profit calculations appears
as an appendix to this memo.

J. Blow

Analyst
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Price Demand for Tickets

Theatre Number $10 Fringe Average Great Heavy Expected
Size of Seats Rent 250 800 2300 4500 Value

Small 100 $600 1,900 2,400 2,400 2,400 2,300

Medium 400 $1,800 700 6,200 10,200 10,200 5,500 Best

Large 1200 $4,700 ‐2,200 3,300 18,300 31,300 3,830

Probability 0.20 0.70 0.09 0.01
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8.1.3 Salvage Value
In this section we consider an extension to the basic model of decision making
under uncertainty when there is one decision and one event. First, we introduce
the concept of a salvage value, which is the remaining value of something which
has not sold at the regular price. It could also be called a clearance price. It
is often used when a company needs to clear inventory quickly; here are some
examples:

1. A newspaper has a regular price of $1.75. The next morning, the left-over
copies are sold to a paper recycling operation for 5 cents each.

2. A winter coat is priced at $300. If it’s not sold by the end of March, it’s
priced to clear at $160.

3. A hardcover book lists for $39.95. Some people buy it at this price, but
when sales drop to nothing, the book is priced to clear at $9.99.

Sometimes items for sale pass through multiple price levels. For example, a
DVD of a recent release may be priced as high as $34.99, but then the price is
progressively lowered to $19.99, then $12.99, and finally the product is priced to
clear at $5.00. However, we will not make models with more than two price levels,
for this only makes the problem complex. Also, unless stated to the contrary, we
will assume that all the inventory which remains after trying to sell the product
at the regular price can in fact be sold at the salvage value. Another assumption
is that the existence of a clearance price does not affect the regular sales. The
solution to the model depends on the assumptions made – if the assumptions are
unrealistic, then so too will be the “solution”.

Theatre Example with Salvage Value

Suppose that fifteen minutes before showtime, the theatre company decides to
price all unsold seats at $2.00 each.2 A sign is placed outside the theatre announc-
ing the price reduction, and hopefully bargain-hunters and passers-by who see the
sign will pay the reduced price to see the play. We will begin by investigating
what happens if we make the following assumptions:

1. All seats not sold at the regular price will sell-out at the reduced price.
2As before, if you wish to think of taxes, imagine that this is the net revenue per ticket after

remitting tax to the government.
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2. The demand at the regular price is not affected by the existence of the
cheaper tickets.

Because we have already solved the problem without the salvage revenue,
all we need do is find what the salvage revenue will be in each of the twelve
situations (3 alternatives; 4 outcomes) and add it to the previously found payoff
in that situation. Clearly, the sell-out situations are unchanged. These are: small
theatre with average, great, or heavy demand; a medium-sized theatre with great
or heavy demand; and a large theatre with heavy demand. For the non-sellout
situations, the salvage revenue is:

$2 × (three-night capacity − the demand for tickets at the regular price)

Using this formula we obtain:

Fringe Average Great Heavy
250 800 2300 4500

Small 300 2(300−250) – – –
= 100

Medium 1200 2(1200−250) 2(1200−800) – –
= 1900 = 800

Large 3600 2(3600−250) 2(3600−800) 2(3600−2300) –
= 6700 = 5600 = 2600

Before proceeding further we should question whether these results seem reason-
able. The extreme situation is when a large theatre has been rented, but the play
only attracts fringe interest. According to the above model, 250 people pay the
regular price, and then ten minutes before showtime 3350 people (spread over
three nights) arrive to fill the theatre. This is clearly not reasonable. First of all,
not that many people would walk by the theatre to obtain tickets, especially a play
which has been panned by the critics. A new assumption about demand is there-
fore required. Perhaps the demand for last-minute discount tickets would only
be about 100 tickets per night (300 in total). Another problem is the ability of
the ticket office to handle a large volume of last-minute tickets. Even based on a
cash-based exact change model, it would be a stretch to think that more than 250
people per night (750 in total) could be admitted this way.

The advantage of working with a model is that it lets us try out more than one
possibility. Let’s see what happens using the limit of 300 last-minute tickets. We
can later see what happens with selling up to 750 last-minute tickets, which would
only require us to change one cell in the spreadsheet.
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Based on a maximum of 300 last-minute tickets would limit the salvage rev-
enue to a maximum of $2(300) = $600. With this assumption the table becomes:

Fringe Average Great Heavy
250 800 2300 4500

Small 300 100 – – –
Medium 1200 600 600 – –
Large 3600 600 600 600 –

If we now believe that this table seems reasonable we can proceed to the next
step, which is to add these payoffs to those obtained before. Doing this, and then
finding the new expected values, we obtain:

Demand for Tickets
Theatre 3-Night Fringe Average Great Heavy Expected
Size Capacity Rent 250 800 2300 4500 Value
Small 300 $600 2000 2400 2400 2400 $2320
Medium 1200 $1800 1300 6800 10,200 10,200 $6040
Large 3600 $4700 −1600 3900 18,900 31,300 $4424

Probability 0.20 0.70 0.09 0.01

As an aside, we note that there are two ways to find the new expected values.
Using the alternative of renting a large theatre to illustrate, one way is to calculate:

0.20(−1600)+0.70(3900)+0.09(18,900)+0.01(31,300) = 4424

The other way is to note that the previous EV in this row was 3830. We added 600
to each of the first three columns, therefore the new EV is:

3830+(0.20+0.70+0.09)600 = 4424

With the assumption that the sales of discount tickets are limited to 300, we see
that while each of the three EVs changes, the optimal alternative remains the same,
i.e. rent a medium-sized theatre.

To do these calculations on a spreadsheet, we modify what we did earlier
(page 346). The formula in cell D4 is currently:

=$C$2*MIN(3*$B4,D$3)-$C4
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The number of unsold seats is either 0 or 3*$B4-D$3, whichever is greater. This
is represented as MAX(0,3*$B4-D$3). By our assumption that we cannot sell
more than 300 discount tickets, the number of discount tickets sold is either 300,
or MAX(0,3*$B4-D$3), whichever is fewer. Hence the number of discount
tickets sold is

MIN(300,MAX(0,3*$B4-D$3))

However, it is better spreadsheet design to put the 300 into a cell, and then let
the formula reference this cell. This is because it makes the 300 transparent, and
because it makes the 300 easier to change. Suppose that we put the 300 into cell
D8. Hence the number of discount tickets sold is:

MIN($D$8,MAX(0,3*$B4-D$3))

They net $2 for each ticket. Again, good spreadsheet design says that we should
put the $2 figure into its own cell, say H8. Hence the salvage revenue is

$H$8*MIN($D$8,MAX(0,3*$B4-D$3))

Adding this revenue the formula in cell D4 becomes:

=$C$2*MIN(3*$B4,D$3)+$H$8*MIN($D$8,MAX(0,3*$B4-D$3))-$C4

There may be more than one way to correctly write a formula. For example, if
the demand equals or exceeds the number of seats, then the revenue is the number
of seats multiplied by $10, otherwise the revenue is the demand multiplied by $10,
plus $2 for each seat not sold at the regular price up to a maximum demand of 300
at the lower price. This logic is captured in the following IF statement for cell D4,
from which the rent is subtracted:

=IF(D$3>=3*$B4,$C$2*3*$B4,$C$2*D$3+$H$8*MIN($D$8,3*$B4-D$3))-$C4

This alternate formula is no shorter, but it may be easier to understand. When
it is entered into the spreadsheet and copied into the range D4:G6, column D in
formula display mode appears as:
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Fringe
250

=IF(D$3>=3*$B4,$C$2*3*$B4,$C$2*D$3+$H$8*MIN($D$8,3*$B4‐D$3))‐$C4

=IF(D$3>=3*$B5,$C$2*3*$B5,$C$2*D$3+$H$8*MIN($D$8,3*$B5‐D$3))‐$C5

=IF(D$3>=3*$B6,$C$2*3*$B6,$C$2*D$3+$H$8*MIN($D$8,3*$B6‐D$3))‐$C6

0.2
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The entire spreadsheet in numerical mode is:
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Price Demand for Tickets

Theatre Number $10 Fringe Average Great Heavy Expected
Size of Seats Rent 250 800 2300 4500 Value

Small 100 $600 2,000 2,400 2,400 2,400 2,320

Medium 400 $1,800 1,300 6,800 10,200 10,200 6,040 Best

Large 1200 $4,700 ‐1,600 3,900 18,900 31,300 4,424

Probability 0.20 0.70 0.09 0.01

Salvage model with up to 300 last‐minute tickets priced at $2

Note that a few words have been added on the spreadsheet to make it clear that
we are looking at a variation of the basic model in which up to 300 last-minute
tickets may be sold at a discount price of $2.00 each.

When a model has been made using a spreadsheet, it is easy to see what hap-
pens if one or more of the assumptions of the model is changed. For example,
suppose that we wish to see what would happen if up to 750 (rather than just 300)
discount-priced last-minute tickets could be sold. All we need do is replace the
300 in cell D4 with 750. Doing this, and then pressing the Enter key, we obtain:
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Price Demand for Tickets

Theatre Number $10 Fringe Average Great Heavy Expected
Size of Seats Rent 250 800 2300 4500 Value

Small 100 $600 2,000 2,400 2,400 2,400 2,320

Medium 400 $1,800 2,200 7,000 10,200 10,200 6,360 Best

Large 1200 $4,700 ‐700 4,800 19,800 31,300 5,315

Probability 0.20 0.70 0.09 0.01

Salvage model with up to 750 last‐minute tickets priced at $2

Even with this assumption, though the expected values for the medium and
large theatres change, the recommendation for the theatre rental remains with a
medium-sized theatre.

A decision analysis model will always be mathematically easy to solve, but
whether or not we have solved the real problem (where to hold the play) depends
heavily on the assumptions on which the model is based.
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8.1.4 Expected Value of Perfect Information

Suppose that in situations of decision making under uncertainty, it might be possi-
ble to obtain perfect information about the uncertain event. For example, suppose
that tomorrow’s weather will be either sunny, cloudy, or rainy. Perfect information
about this event would imply that today’s forecast for tomorrow is certain to be
correct. Of course, a perfect weather forecast is not possible, but the hypothetical
construct of perfect information is useful because it establishes an upper bound
for the expected value of any information about the event. For example, if a per-
son would pay $5.00 to hear a perfect weather forecast, then a real forecast can be
worth no more than $5.00.

We are interested in determining the expected value of perfect information
(EVPI). We now show how to calculate the EVPI, using the theatre problem as
an example. In this case, the uncertainty is the level of demand. Having perfect
information means that we are told the demand level before having to commit
to one of the three theatres. With perfect information we can choose the best
alternative with respect to the level of demand. For any level of demand, we
are interested in the highest payoff (i.e. the highest payoff in the column). We
recall the payoff matrix for the basic model (i.e. no salvage value), and on this we
highlight the best payoff in each column:

Demand for Tickets
Theatre 3-Night Fringe Average Great Heavy Expected
Size Capacity Rent 250 800 2300 4500 Value
Small 300 $600 1900 2400 2400 2400 $2300
Medium 1200 $1800 700 6200 10,200 10,200 $5500
Large 3600 $4700 −2200 3300 18,300 31,300 $3830

Probability 0.20 0.70 0.09 0.01

If we are told that the demand will be “fringe”, then we will choose a small theatre
for a payoff of $1900 (the highest payoff in the “fringe” column). If we are told
that the demand will be “average”, then we will choose a medium-sized theatre for
a payoff of $6200. If we are told that the demand will be “great” or “heavy”, then
we will choose a large theatre, with a payoff of $18,300 for “great” and $31,300
for “heavy”.

There are now two ways to complete the calculation of the EVPI.
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Direct Calculation of the EVPI

The new information only has value if it would change the recommendation that
we had before. Before receiving the perfect information, we would have recom-
mended renting a medium-sized theatre. If the perfect information is that demand
will be “average”, then we will still make the same recommendation. However, in
the other three outcomes of demand, we will change the recommendation, thereby
increasing the payoff over what it would have been. If the perfect information is
that demand will be “fringe”, then we would change the recommendation from
medium to small, thereby increasing the payoff from 700 to 1900. If the perfect
information is that demand will be “great”, then we would change the recommen-
dation from medium to large, thereby increasing the payoff from 10,200 to 18,300.
If the perfect information is that demand will be “heavy”, then we would change
the recommendation from medium to large, thereby increasing the payoff from
10,200 to 31,300. The probabilities of the perfect information being that these
outcomes will occur are 0.20 for “fringe”, 0.09 for “great”, and 0.01 for “heavy”.
Hence there is a 20% chance of increasing the payoff from 700 to 1900, a 70%
chance of the payoff remaining at 6200, a 9% chance of increasing the payoff
from 10,200 to 18,300, and a 1% chance of increasing the payoff from 10,200 to
31,300. The EVPI is therefore:

EVPI = 0.20(1900−700)+0.7(6200−6200)+0.09(18,300−10,200)
+ 0.01(31,300−10,200)

= 0.20(1200)+0+0.09(8100)+0.01(21,100)
= 240+0+729+211
= 1180

The expected value of perfect information in the theatre example is $1180.

Indirect Calculation of the EVPI

To indirectly calculate the EVPI, we first find the expected value with perfect
information. To avoid confusion with the EVPI, the short form is EV with PI.
The EV with PI is found by calculating the expected payoff based on the best
alternative for each outcome. This is done by calculating the expected payoff
using the highest payoff in each column.

EV with PI = 0.20(1900)+0.70(6200)+0.09(18,300)+0.01(31,300)
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= 380+4340+1647+313
= 6680

The EV with PI is $6680. If we did not have the perfect information, we would
have chosen the medium-sized theatre alternative, which has an expected payoff
of $5500. The EVPI is the expected amount of the profit increase from not having
perfect information to having it. The EVPI is therefore:

EVPI = EV with PI−EV without PI
= 6680−5500
= 1180

As before, the EVPI is $1180. You are expected to know how to calculate the
EVPI using both of these methods.

For the theatre example, the $1180 establishes an upper bound to the value of
any information concerning the demand. If more information were available, the
most that they would pay for it would be $1180. If the price were say $500, then it
might be worthwhile purchasing it; it would depend on how good the information
is. However, if the price were $2000, it would not be worth purchasing no matter
how good it is. While a small theatre company would not try to obtain more
information about the demand, a company with millions of dollars at risk probably
would.

8.1.5 Decision Criteria
Up to this point our sole decision criterion has been Expected Value. For a profit
maximization example, we would choose the alternative with the highest expected
value. For a cost minimization example (in which all the payoffs are costs) we
would choose the alternative with the lowest expected value. This will remain
our preferred decision criterion, but there are other criteria as well, and they are
reviewed here. They are illustrated using the theatre example:

Demand for Tickets
Theatre 3-Night Fringe Average Great Heavy
Size Capacity Rent 250 800 2300 4500
Small 300 $600 1900 2400 2400 2400
Medium 1200 $1800 700 6200 10,200 10,200
Large 3600 $4700 −2200 3300 18,300 31,300

Probability 0.20 0.70 0.09 0.01
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Pessimism

If a small theatre is chosen, the payoff will be either $1900 or $2400. Hence, the
payoff will be at least $1900. If a medium-sized theatre is chosen, the payoff will
be either $700, or $6200, or $10,200, hence the payoff will be at least $700. From
the four outcomes in the “Large” alternative row, we see that the payoff will be
at least −$2200. Of these three minimum payoffs, $1900, $700, and −$2200,
the highest is the $1900 payoff. The alternative associated with this payoff is the
small theatre.

Recommendation For a pessimist, renting the small theatre would be best.

For any maximization problem, the alternative associated with pessimism is
the one which contains the maximum of the row minimums. [Note: In this ex-
ample, all the row minimums were in the same column, but this will not be true
in general.] For any minimization problem, the alternative associated with pes-
simism is the one which contains the minimum of the row maximums. Pessimism
is an extreme form of risk-aversion which ignores all the information about prob-
abilities.

Optimism

An optimist seeks the maximum for each alternative, and then seeks the maxi-
mum of the maximums. For the theatre example, the row maximums for Small,
Medium, and Large are $2400, $10,200, and $31,300 respectively. The maximum
of these three is $31,300, and the alternative associated with this payoff is the
large theatre.

Recommendation For an optimist, renting the large theatre would be best.

Like pessimism, optimism ignores the information about probabilities. When
optimism is applied to a cost minimization problem, we find the minimum of the
row minimums.

Hurwicz

The Hurwicz criterion is a mixture of the criteria of Pessimism and Optimism.
Either a coefficient of Pessimism (CoP) or a coefficient of Optimism (CoO) (one
is the complement of the other) is chosen, and then (for maximization) a weighted
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average of the row minimums and maximums is found; the alternative with the
highest weighted average is then chosen.

For the purposes of this course the CoP or CoO will be an exogenously given
number. For example, suppose we wish to solve the theatre problem with an
exogenously given coefficient of pessimism of 0.85. Hence, the coefficient of
optimism is 1−0.85 = 0.15, and we have:

Pess. Opt. Hurwicz
Small 1900 2400 1975
Medium 700 10,200 2125
Large −2200 31,300 2825

0.85 0.15

The highest weighted average in the Hurwicz column is 2825, which is in the large
theatre row.

Recommendation Based on Hurwicz with CoP = 0.85, a large theatre would be
recommended.

For a cost minimization problem, the pessimism column is based on row max-
imums, the optimism column is based on row minimums, and the chosen alterna-
tive is based on the lowest number in the Hurwicz column.

Laplace

The Laplace and Expected Value criteria are similar, except that for the Laplace
equal probabilities are used. With n outcomes, the probability that any one of
them occurs is 1/n. The ranking for the Laplace criterion is conveniently found by
summing, for every alternative, all n payoffs, and then dividing by n. We choose
the highest ranking for maximization, and the lowest ranking for minimization.

For the theatre example with its four outcomes we have:

Small (1900 + 3(2400))/4 = 2275
Medium (700 + 6200 + 2(10,200))/4 = 6825
Large (−2200 + 3300 + 18,300 + 31,300)/4 = 12,675

The highest of these is 12,675, which is associated with the large theatre.
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Recommendation Based on the Laplace criterion the large theatre would be
recommended.

The calculations for the four criteria of Pessimism, Optimism, Hurwicz, and
Laplace can all be done on one payoff matrix. The best payoff for each criterion is
highlighted; from these payoffs the best alternative for each criterion can be seen.

Theatre Demand for Tickets
Size Fringe Average Great Heavy Pess. Opt. Hurwicz Laplace
Small 1900 2400 2400 2400 1900 2400 1975 2275
Medium 700 6200 10,200 10,200 700 10,200 2125 6825
Large −2200 3300 18,300 31,300 −2200 31,300 2825 12,675

0.85 0.15

The Regret Matrix

The regret matrix gives the cost of having not chosen, with hindsight, the best
alternative for a given outcome. For example, in the theatre problem if the demand
turns out to be “average”, then the payoff is $2400 for small, $6200 for medium,
and $3300 for large. With hindsight, renting a medium-sized theatre is best for
this particular outcome. In this case, there is no foregone profit. However, if the
small theatre alternative were chosen, the foregone profit would be

$6200−$2400 = $3800

and if the large theatre alternative were chosen, the foregone profit would be

$6200−$3300 = $2900

The foregone profit is also called the opportunity loss. To find the opportunity
loss for each situation from an already existing payoff matrix, we work with one
column at a time. In every column of the payoff matrix, we subtract each number
in the column from the largest number in that column. It is also possible to obtain
the regret matrix without first finding the payoff matrix, and indeed one reason
for obtaining the regret matrix is that it is sometimes easier to calculate than the
payoff matrix. No matter how it is obtained, one property that the regret matrix
will always have is that there must be at least one zero in every column.

In a payoff matrix we found the expected value for every alternative; in a
regret matrix we find the expected opportunity loss (EOL) for every alternative.
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It is found in an analogous manner to the EV – by finding the dot product of the
probability row with every payoff row. The objective is to minimize the expected
opportunity loss, so the best alternative is the one with the lowest number in the
EOL column. The regret matrix along with EOL column for the theatre example
is:

Regret Matrix Demand for Tickets
Theatre 3-Night Fringe Average Great Heavy
Size Capacity Rent 250 800 2300 4500 EOL
Small 300 $600 0 3800 15,900 28,900 $4380
Medium 1200 $1800 1200 0 8,100 21,100 $1180
Large 3600 $4700 4100 2900 0 0 $2850

Probability 0.20 0.70 0.09 0.01

Recommendation Rent a medium-sized theatre, with an expected opportunity
loss of $1180.

Some interesting comparisons can be made with the solution obtained by using
a payoff matrix:

1. We obtained the same alternative using the regret matrix as we did when
using the payoff matrix. This is not a coincidence – whether we maximize
the expected value or minimize the expected opportunity loss, we always
obtain the same alternative. Hence minimizing EOL, unlike pessimism,
optimism, Hurwicz, and Laplace, is not a new decision criterion, but instead
is just a variation on the maximizing expected value approach.

2. The minimum EOL, which is $1180, equals the EVPI. Again, this is not
a coincidence – it is always true. While this gives us a third method for
finding the EVPI, usually one does not take this approach to finding it if the
payoff matrix has already been found.

3. For every alternative, the sum of the expected value and the expected op-
portunity loss is the same. Moreover, this sum is the EV with PI.

EV + EOL = EV with PI
Small 2300 + 4380 = 6680
Medium 5500 + 1180 = 6680
Large 3830 + 2850 = 6680

This property is true for all examples.
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8.1.6 Marginal Analysis
Some problems involving one decision and one event can be solved by a method
that requires less work than is required for making a payoff matrix. This new
method is called marginal analysis. It is applicable to problems in which there is a
cost per unit ordered (w), a price at which items are sold (r) where the demand has
any kind of discrete distribution (P(d)), and a price per unit at which all leftover
items are sold (s). The marginal analysis method is not applicable for irregular
problems such as the theatre example.

Let x (an integer) represent the optimal order quantity. The parameters of the
model are:

Symbol Meaning
r retail price
s salvage price
w wholesale price

The context requires that the retail price be greater than the wholesale price, for
otherwise the business could not exist. Also, the salvage value must be less than
the wholesale price, for otherwise any amount of stock could be ordered at no risk
to the retailer. Putting these observations into symbolic terms we have:

r > w > s

The distribution P(d) gives the probability that the demand at price r is for exactly
d units. We let F(d) represent the cumulative probability function, which is the
probability that d or fewer units are demanded. We can write F(d) in terms of
P(d) as follows:

F(0) = P(0)
F(1) = P(0)+P(1)
F(2) = P(0)+P(1)+P(2)
F(3) = P(0)+P(1)+P(2)+P(3)

and so on. Also, for d ≥ 1, we can use the recursive formula:

F(d) = F(d−1)+P(d) (d ≥ 1)

The optimal order quantity is given by the marginal analysis formula. It is not
proved here, because the proof is somewhat advanced for an introductory course.
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[You will not be tested on the proof – all that is required is that you know how to
use the formula.] The value of x (the optimal order quantity) is chosen such that:

F(x−1)<
r−w
r− s

≤ F(x) (8.2)

Another way of saying this is that we want the smallest value of x such that:

r−w
r− s

≤ F(x)

An Example

Suppose that a vendor of digital pianos can buy pianos from the wholesaler for
$1325 each. The retail price per piano will be $1600, but if any are left unsold
by the end of the year, they will be priced to clear at $1200 each. The retailer
believes that at the $1600 price at least five pianos can be sold, and as many as
nine could be sold according to the following probability density function: five
10%, six 20%, seven 30%, eight 25%, and nine 15%.

Hence r = 1600, w = 1325, and s = 1200. Therefore,

r−w
r− s

=
1600−1325
1600−1200

=
275
400

= 0.6875

The demand is governed by P(5) = 0.1, P(6) = 0.2, P(7) = 0.3, P(8) = 0.25, and
P(9) = 0.15. All P(d) from d = 0 to d = 4 inclusive are 0, hence F(d) = 0 from
d = 0 to d = 4 inclusive. Hence

F(5) = F(4)+P(5)
= 0+0.1
= 0.1

We can make a table to find F(d), in which d goes from 5 to 9 inclusive, P(d)
comes from the given probabilities, and F(d) is found recursively (for example
the two numbers highlighted in blue are summed to find the number highlighted
in red):
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d 5 6 7 8 9
P(d) 0.1 0.2 0.3 0.25 0.15
F(d) 0.1 0.3 0.6 0.85 1.0

The critical value is at 0.6875; the number just above this in the F(d) line is 0.85
(highlighted in yellow), and this is in the d = 8 column. In terms of the formula
we have:

F(8−1) = 0.6 < 0.6875≤ 0.85 = F(8)

Recommendation Order eight digital pianos.

Note that while the formula gives us the best order quantity, it does not also
give us the expected payoff associated with this quantity. If we want this too, we
can easily find it by solving for only the optimal row in the payoff matrix.

8.2 Decision Trees 1

8.2.1 Introduction
In the previous section, we examined simple situations in which there was only
one decision, and each alternative was followed by the same event (same out-
comes, with the same probabilities). Of course, problems in real-life are not that
simple. Even when there is only one decision, the alternatives may be followed
by different events. Also, there may be multiple decisions to be made. Either of
these complications means that a payoff matrix cannot be used. Beginning with
this section, we show how to handle more complex examples. Such problems will
be analysed by first drawing what is called a decision tree. The drawing of the
tree, along with the definitions of any symbols or abbreviated forms used on the
tree, constitutes the formulation of the problem. The problem is then solved by
performing a rollback procedure on the tree. Finally, the recommendation should
be stated clearly.

The overall procedure involves three phases:

1. The tree is drawn from left to right.

2. The rollback procedure is performed from right to left.

3. The recommendation is given in writing.
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In this introduction we explain the graphical symbols used in the decision tree
method. Just as real trees have branches, so do decision trees. On a decision tree,
the point at which two or more branches meet is called a node. All decision trees
have at least two kinds of nodes – decision nodes and event nodes. A decision
node is drawn as a square, and an event node is drawn as a circle. Associated with
each type of node is a corresponding branch emanating from the right side of the
node. A decision node is followed by an alternative branch, and an event node is
followed by an outcome branch. An alternative branch is represented by a double
line, and an outcome branch by a single line.

Some textbooks only use what we have described so far, but we find that it
is useful (whenever the decision criterion is expected value) to use three more
symbols – a cost gate, a payoff node, and a null branch. A cost gate resembles
a toll gate on a highway. It is drawn as two small squares (posts) joined by a
straight line (the gate). The cost associated with the gate is written next to it; if it’s
a revenue rather than a cost, then the number is placed in parentheses. A payoff
node is represented by a crossed circle, which is used to keep track of payoffs
which occur before the ending branches of the tree. At the ending branch of the
tree (on the extreme right-hand side), the payoff at that point is simply written
down – a payoff node is not used. A payoff node is followed by a null branch,
which is represented as a dashed line. Cost gates can appear on both alternative
and null branches, usually representing a cost on the former, and a revenue on the
latter. As an alternative to using cost gates (with the cost or revenue next to the
gate), payoff nodes, and null branches, the maker of the decision tree could keep
track of all costs and revenues and then subtract/add them to the appropriate final
payoffs. Indeed, when dealing with utility functions (a topic which is beyond the
scope of this book) that approach must be used. (This is why some textbooks avoid
these three latter symbols.) However, whenever expected value is the decision
criterion, using these three extra symbols makes the solution easier to find.

These symbols with their meanings are shown in Figure 8.1. These seven
(or just four) symbols are all that are used when formulating a problem using a
decision tree. However, when solving the tree (from right to left), we will use
an eighth symbol, which is applied at every square to every branch except that of
the best alternative at that square. This symbol consists of two short parallel lines
which are drawn at a right angle to the alternative branch:

non-recommended alternative

As has been stated, a decision tree is drawn from left to right, and is then solved
(“rolled-back”) from right to left. The tree is not drawn to scale with respect to



366 CHAPTER 8. DECISION ANALYSIS I

decision node

����event node

����@@�� payoff node

cost gate

alternative branch

outcome branch

null branch

Figure 8.1: Symbols for Drawing Decision Trees (from Left to Right)

time, but the relative position in time must be preserved. Hence if something
appears to the right of something else, then the thing on the right must come after
(or be at exactly the same time) as the thing on the left.

8.2.2 Theatre Problem in Tree Form

To illustrate the nature of this approach, we will begin by formulating the theatre
problem as a decision tree. [The problem description appears in Section 8.1.2.]
This problem needs no payoff nodes; it can be done with or without cost gates on
the alternative branches. We will do it both ways, first without cost gates to show
the equivalence with the payoff matrix approach, and then with cost gates to show
how these are used. The basic shape of the tree is the same for both approaches,
so we will start with that. It should be emphasized that in using this method only
one tree needs to be drawn. However, to illustrate this methodology, several trees
are shown for one problem so that the order in which the material is drawn is
made clear. We begin with a square on the left-hand side which represents the
theatre rental decision. Emanating from the right-hand side of the square are three
alternative branches (double lines). Next to these branches is a word describing
the meaning of the alternative.
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At the end of each of the alternative branches, there is a circle for the demand
for tickets. Coming out of each circle there are four outcome branches (single
lines). Again, words are written to describe the meaning of each outcome. Adding
all this to the tree we obtain:
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Without Cost Gates

When cost gates are not used, all costs are imbedded in the final payoffs. There
are twelve final branches, and the payoffs which go to their right are in fact the
twelve numbers which we calculated earlier and placed in the main body of the
payoff matrix. Writing these numbers onto the tree we obtain:
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−2200

3300

18,300
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We have finished the left-to-right formulation of the model, and we now pro-
ceed with the roll-back procedure, which proceeds from right to left.

At each circle, we compute the expected value. Just as we saw when we did
it as a payoff matrix, the expected payoff at the circle which ends the “small”
alternative branch is:

EV(small) = 0.20(1900)+(0.70+0.09+0.01)(2400)
= 380+1920
= 2300

Similarly,

EV(medium) = 0.20(700)+0.70(6200)+(0.09+0.01)(10,200)
= 140+4340+1020
= 5500
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EV(large) = 0.20(−2200)+0.70(3300)+0.09(18,300)+0.01(31,300)
= −440+2310+1647+313
= 3830

Putting these numbers from the rollback procedure onto the tree we obtain:
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Moving to the left, we come to the square. At a square the best (highest, for
profit maximization) payoff is chosen. Clearly, this is the $5500 associated with
the medium-sized theatre alternative, and this number goes next to the square. The
sub-optimal alternatives are marked with short double lines at right angles to the
alternative branches. Putting these things on the tree we have:
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Recommendation Rent a medium-sized theatre, with an expected payoff of
$5500 before the deduction of $2500 in fixed expenses, or $3000 after making
this deduction..

With Cost Gates

In the theatre problem there is a cost associated with each alternative, which is the
rent for the theatre. Recall that this was $600 for the small theatre, $1800 for the
medium-sized theatre, and $4700 for the large one. Though we are starting with
the tree having being drawn in this instance, normally one would begin to draw
the tree and put on the cost gates as the alternative branches are drawn. The tree
with cost gates (but without the final payoffs) is:
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Now we must determine the final payoffs. For some problems, these payoffs
are given exogenously in the problem description, but for this example we must
work them out. These payoffs are all revenues from ticket sales. Recall that the
small, medium, and large theatres can hold, over three nights, 300, 1200, and
3600 people respectively. The demand levels for fringe, average, great, and heavy
are 250, 800, 2300, and 4500 respectively. The tickets net $10 each. A small
theatre obtains a revenue of $10(250) = $2500 with fringe demand, but otherwise
the theatre is filled for a revenue of $10(300) = $3000. A medium-sized theatre
has a revenue of $2500 for fringe demand, $10(800) = $8000 for average demand,
but otherwise the theatre is filled for a revenue of $10(1200) = $12,000. A large
theatre has a revenue of $2500 for fringe demand, $8000 for average demand,
$10(2300) = $23,000 for great demand, and is filled with heavy demand with a
revenue of $10(3600) = $36,000. An advantage of using the cost-gate approach is
that it creates a fair amount of repetition in the final payoffs. Adding these payoffs
to the tree we obtain:
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Now we calculate the expected value at each circle. Normally we would not
write all the details out; we would simply calculate the numbers and then write
them on the tree. However, since this is the introductory section for this material,
the full workings are shown:

EV(small) = 0.20(2500)+(0.70+0.09+0.01)(3000)
= 500+2400
= 2900

EV(medium) = 0.20(2500)+0.70(8000)+(0.09+0.01)(12,000)
= 500+5600+1200
= 7300

EV(large) = 0.20(2500)+0.70(8000)+0.09(23,000)+0.01(36,000)
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= 500+5600+2070+360
= 8530

Putting these numbers onto the tree we have:
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We are now interested in finding the highest net payoff at the square, each
net payoff being the expected value at the circle minus the cost at the gate. The
choices are: small, 2900−600 = 2300; medium, 7300−1800 = 5500; and large,
8530− 4700 = 3830. The best of these (as we saw before) is medium with an
expected payoff of 5500. We write the 5500 next to the square, and draw short
parallel lines through the sub-optimal alternatives to obtain:
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Of course, the recommendation is the same as before: Rent a medium-sized
theatre, with an expected payoff of $5500 before the deduction of $2500 in fixed
expenses, or $3000 after making this deduction..

8.2.3 The Expected Value of Perfect Information

To find the EVPI using a decision tree, the event must precede the decision. This
is because the decision maker receives the perfect information (which is that a
particular outcome will occur) and then chooses the best alternative afterwards.
Technically, the event is not the demand per se, but instead is the prediction about
the demand. However, because the prediction is perfect, it has the same outcomes
and probabilities as the demand itself. The tree therefore begins with an event
node, followed by the four outcomes.
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For each outcome, we can simplify the choices down to one or two reasonable
alternatives. For example, if we are told that there will be fringe demand, it makes
no sense to pay more rent for a medium-sized or large theatre, when a small one
can easily handle all the demand. At the other extreme, not even the large theatre
can handle heavy demand, so we wouldn’t even consider a small or medium-
sized theatre in this situation. With the other outcomes, it’s not clear whether
we should choose a theatre which is a size less than the demand (to save on the
rent), or whether we should rent a theatre which is a size bigger than the demand.
Hence with average demand we could investigate both a small and a medium-
sized theatre, and with great demand we could consider both a medium-sized and
a large theatre. Adding the reasonable alternatives with their cost gates and final
payoffs, we obtain:
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We now perform the rollback to obtain:
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Calculating the EVPI by the indirect method, we obtain (as we did before):

EVPI = EV with PI−EV without PI
= 6680−5500
= 1180

The expected value of perfect information is $1180.
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8.2.4 Sequential Decision Making
Example

Bill operates a hardware store doing a reasonable amount of business for its size.
There’s a possibility of a smelter being built nearby, which will boost the town’s
population and his business if it goes ahead. Because of this, Bill wonders whether
or not he should expand the store. The company which would operate the smelter
has said that they will know one way or the other by late September, but that would
be too late to look for a contractor to get the work done before the onset of winter.
At the present time, there’s about a 40% chance of the smelter going ahead.

Bill figures that relative to the profit that he would make anyway, the expan-
sion would generate a profit margin of $5,000,000 (net present value, exclud-
ing the capital costs of the expansion) if the smelter goes ahead, but only about
$1,600,000 if it does not. A contractor has quoted him a firm construction cost of
$2,900,000, provided that a contract is signed by July. If he does nothing before
October, he could then make a deal for the expansion. If the smelter company has
then said that they are indefinitely delaying the project, then the $2,900,000 price
is still available, but with a surcharge of $150,000 for winter work. On the other
hand, if the smelter company is going ahead with the project, then the construc-
tion cost will jump to a total of $4,500,000, because everyone will be looking for
construction work to be done.

Solution

Bill has two opportunities to expand his store. He could do it in July, when the
construction cost would be lowest. Alternatively, he could do it in October, after
he hears about a proposed smelter. The tree for this problem will have three parts:
a decision about expanding now, an event concerning the smelter, and a decision
about expanding in October.

We begin the tree by considering only the initial decision. He can either ex-
pand now, or wait to hear about the smelter. Expanding now would cost $2,900,000,
which we write on the tree as 2.9, making a note that all financial information is
in millions of dollars.

The initial formulation of the tree is shown in Figure 8.2.
No matter which alternative is chosen, we then hear some information about

the smelter. Either we find out that the smelter company is proceeding with its
construction, or they have decided to delay construction for an indefinite period.
While this is a decision from the point of view of the smelter company, it is an
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Figure 8.2: Bill’s Hardware Store: Initial Part of the Formulation
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event from Bill’s perspective, because he has no control over it. Adding this event
with its two outcomes, we obtain the partial formulation of the tree shown in
Figure 8.3.

On the top part of the tree we place the two payoffs, which are the $5,000,000
and $1,600,000 figures mentioned in the text of the problem. On the bottom part
of the tree, we draw the structure for the second decision. The construction costs
are different from what they were before, either because of a price increase caused
by all the smelter activity, or because of the extra cost for construction during the
winter. There are four final payoffs; the two of these which are 0 are not mentioned
explicitly in the problem description. For these we must see that if Bill does not
expand his store, then the profit margin relative to what he is doing now must be
0. The complete formulation of the tree is shown in Figure 8.4.

Proceeding from right to left, we rollback the tree, finding the highest net
payoff at each square, and the expected payoff at each circle. The rollbacked tree
is shown in Figure 8.5.

The recommendation is to wait until October. If it’s announced that the smelter
will proceed, then Bill should expand his store. If it’s announced that the smelter is
indefinitely delayed, then Bill should do nothing. The ranking payoff is $200,000.

Finding the EVPI

We find the EV with PI by using a tree as shown in Figure 8.6. Note that because
all the information comes at the outset, that if the expansion is to be done at all it
would be best to do it in July, when the construction cost would be lowest.

The EV with PI calculated on the tree is 0.84, i.e. $840,000. Since we would
have obtained $200,000 without the perfect information, the EVPI is:

EVPI = EV with PI−EV without PI
= $840,000−$200,000
= $640,000
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Note: All financial information
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Note: All financial information
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Note: All financial information
is in millions of dollars.
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8.3 Problems for Student Completion

8.3.1 Technical Exercise
A business must choose one of four alternatives. After the alternative has been
chosen, an event occurs. This event has three mutually exclusive outcomes. The
conditional payoffs are given in the following table.

O1 O2 O3 EV
A1 −50 70 80
A2 −20 −15 90
A3 200 −20 −40
A4 60 −40 60

Prob. 0.3 0.2 0.5

(a) Determine the best alternative by finding the expected value associated with
each alternative.

(b) Determine the EVPI by first finding the EV with PI.

(c) Find the regret matrix, and find the best alternative by computing the EOL for
each alternative.

8.3.2 Choosing a Concert Venue
A concert promoter is planning a single performance of J.S. Bach’s Mass in B
minor by a choir and organist. Several venues are being considered, all of which
have a pipe organ, and are accessible for those with physical challenges. The
seating capacities and rental fees are:

Venue Seats Rent
Church 500 $400

Cathedral 900 $800
Concert Hall 1400 $1100

Basilica 1500 $1200

All tickets sell for $30, but $5 of this is a ticket agency fee and taxes. In
addition to the rents mentioned above, for all tickets sold beyond the first 800,
the promoter will pay 20% of the incremental revenue to the venue. Hence the
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promotor receives a net of $25 per ticket for the first 800 tickets, and 0.8(25) =
$20 per ticket for all other tickets sold. The promotor believes that the demand will
be as follows: 400 30%; 700 25%; 1000 20%; 1300 15%; and 1600 10%. Aside
from the aforementioned costs, there will be $16,000 required for professional
fees, advertising, and so on.

By hand, make a payoff matrix to determine which venue the promoter should
rent.

8.3.3 Computer Retailing
A computer retailer is about to order some computers from the manufacturer. Over
the next two months the retailer believes that there is a 20% chance of demand for
ten computers, a 30% chance of demand for eleven, a 20% chance of demand
for twelve, a 20% chance for thirteen, and finally a 10% chance that fourteen
computers will be demanded. On a per-unit basis, the wholesale cost is $1500,
and the retail price is $1950. Any computers leftover after the two month period
can be sold without problem at $1400 each.

(a) Solve this problem by hand by using a payoff matrix. Rather than develop a
formula, it is easier to first find out what happens if 10 computers are ordered,
and then 10 are demanded. Then, calculate the payoff when 11 are ordered,
and 11 are demanded, and then continue to find the rest of the payoffs on the
main diagonal. Next, write the payoffs in the top right-hand triangle (very
easy). Finally, write the payoffs in the bottom left-hand triangle. Begin this
latter step by determining what happens if 11 computers are ordered, but only
10 are demanded. By how much worse should this be than the (10,10) situ-
ation? By how much worse should this be than the (11,11) situation? Both
answers should lead to the same payoff for the (11,10) case. Continue in
this manner to find all the payoffs. Then, compute the expected values and
determine the best policy.

(b) Determine a recommendation by using a spreadsheet.

(c) Determine a recommendation using the marginal analysis formula. [Obvi-
ously, (a), (b), and (c) should produce the same result.]

(d) Determine the EVPI both directly and indirectly.

(e) Which alternative would be picked using: (i) Pessimism; (ii) Optimism; (iii)
Hurwicz with a coefficient of optimism of 0.8; (iv) Laplace?
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(f) By hand, find the regret matrix, and determine the alternative with the min-
imum EOL. Try to find the regret matrix just from the data of the problem,
without looking at the payoff matrix from part (a).

8.3.4 Marginal Analysis Problem

A vendor has found that demand for newspapers can vary from 31 to 70 inclusive
with each number being equally likely. Newspapers are bought by the vendor at
50 cents each, and are sold for 75 cents each. Any left-over copies at the end of
the day are sold to a recycling operation at 5 cents per copy. By using the marginal
analysis formula, determine the number of copies that the vendor should order.

8.3.5 Niagara Frontier Winery

Make a decision tree for the situation described in the following problem, and
provide a recommendation.

Driving to her office in St. Catherines, Ontario, Betty Johnson, the production
manager of Niagara Frontier Winery, heard a very disturbing weather forecast.
“Environment Canada has issued a severe frost warning for the Niagara Region
for later in the week”. This was only the 27th of September, and the grapes would
not be ready for harvest for another three weeks. Telephoning the weather office
for more detailed information, she was told that in three days time there would be a
60% chance of a mild frost, and a 30% chance of a severe frost. A mild frost could
at least be contained by erecting heaters in the fields at a cost of $350,000. Using
heaters, the damage would be minimal; about 80% of the crop could still be made
into high-quality wine, and a further 10% could be made into low-quality wine. A
severe frost, on the other hand, would destroy the crop entirely; even an attempt at
using heaters would be in vain. As long as she made up her mind by 1 p.m., there
was enough time to erect the heaters. Also, there was enough time to order that
all the crop be picked immediately, which would cost $400,000. It could either
be sold as grape juice or made into low-quality wine at a value of $1,200,000. If
the crop were picked in good condition in three weeks time, however, it would be
worth about $3,000,000, but from this the $400,000 harvesting cost would have to
be paid.

There was one more complication. The research department had come up with
something called “ice-wine”. If the heaters were not used and a mild frost was
experienced, none of the crop could be made into high-quality wine, but perhaps
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this could be made into ice-wine. This would cost $400,000 to pick the crop,
and would have a 75% chance of success. A successful product would be worth
$2,600,000, but a failure would be worth nothing. Alternatively, about 85% of
the crop with mild frost damage could be sold as low-quality wine. Betty made
herself a pot of tea and then looked at her watch. The one o’clock deadline was
fast approaching.

8.3.6 Ski Resort Snow System
A ski resort has always relied on natural snow, which could come in any one
of four levels: heavy, medium, light, or none, with probabilities 0.1, 0.4, 0.3,
and 0.2 respectively. They are now, in July, considering the installation of an
artificial snow-making system before the upcoming season. If installed, the annual
amortized cost would be $40,000. The operating costs of the snow system would
be $0 if the natural snow were heavy, $50,000 if medium, $80,000 if light, and
$110,000 if there were no natural snow. With an artificial snow system, or with
heavy natural snow, they would obtain revenue of $200,000. With no artificial
snow, the revenue would be only $130,000 with medium snow, $70,000 with little
snow, and $0 if there were no snow. Operating costs other than snow-making
would be $45,000 per year (whether artificial or natural snow).

Choosing, before the season begins, to close the operation completely for
the upcoming season, would allow them to rent the land with a rental income
of $20,000.

(a) Solve this problem using a decision tree.

(b) Determine the EVPI by first finding the EV with PI.

8.3.7 Retailing Compact Discs
Despite the appeal of digital formats to some people, a record shop in the down-
town area still sells used vinyl LPs and new compact discs. The owner of the
store must decide which discs and the number of each to order for the Christmas
sales season. A new compilation of classical music featuring Mozart’s Laudate
Dominum, the Allegro from Symphony No. 1 in B-flat Major by William Boyce,
Les Barricades Mystérieuses by François Couperin, Sarabande by Handel, and
many others, is sweeping the world. Orders for the disc must be placed with the
distributor in lots of 100. If she orders 100 discs, the cost to her would be $14 per
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disc; 200 discs would cost $12 per disc, and 300 or more in lots of 100 would cost
$10 per disc. Until Christmas Day the retail selling price will be $20 per disc; any
left over after Christmas will be sold to a discount house in another city for $5
per disc. The owner believes that at the regular price the possible demands are 50,
100, 150, 200, 250, 300, or 350 discs, with probabilities 0.05, 0.1, 0.2, 0.3, 0.2,
0.1, and 0.05 respectively. She must place her entire order now. Assume that she
will suffer no loss of goodwill if she happens to be out of stock.

(a) Make and solve a model in Excel to provide a recommendation to the owner
based on maximizing the expected profit.

(b) Determine the expected value of perfect information.

(c) Suppose that the $5 to be received for each leftover disc is negotiable within
the range $0 to $10. Over what range for this value would the recommended
order quantity found in part (a) be valid?

(i) This can be found by manually varying the number in whatever cell was
used for the salvage value in part (a).

(ii) This can also be done by using Goal Seek, which is found under Data/What-
if Analysis. In Goal Seek there are three boxes to be filled in, called Set
cell:, To value:, and By changing cell:. Make two cells which calculate
the difference in Expected Profit between the optimal order quantity row
and (i) the row above it, and (ii) the row below it. Now run Goal Seek
twice, where the objective in each is to make one of these two cells equal
to 0. Here, the cell which computes the difference is the Set cell:, the
To value: is 0, and the By changing cell: is the cell which contains the
salvage value.



Chapter 9

Decision Analysis II

9.1 Decision Tree with Payoff Nodes

In the previous chapter, we saw most of the technical operations to handle decision
trees. If there’s any difficulty using trees, it is the formulation – the rollback
procedure is very straightforward. In this section we solve a fairly long case.
Doing this case adds one more technical operation – the use of payoff nodes. More
importantly, though, solving this case illustrates the application of the decision
tree methodology to a somewhat complex situation.

9.1.1 Case: New Detergent Marketing Campaign

Elizabeth, John, and Susan work for a consumer products company. They come
from widely different academic backgrounds. Before joining the company, Eliz-
abeth obtained a B.Sc. and M.Sc. in biochemistry, and is now part of a research
team which has come up with a new type of detergent. John earned a joint B.A. in
English literature and art, worked for a while for a competitor, and now works with
his present employer on all advertising campaigns. Susan obtained a B.Comm.,
specializing in marketing, but she was good at all things, including the course on
decision modeling. She is now doing an MBA part-time, while working full-time.

They recently held a meeting to discuss what to do about the newly developed
detergent. The meeting began with Elizabeth welcoming the others. “John and
Susan, thanks for coming. The research team is very pleased with this new prod-
uct. We tested it extensively in the laboratory, and found that there was virtually
no fading of colours even after 100 washes. I hope that with your help we can

391
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bring this product to market.” “John and I have read the report,” Susan replied,
“but it’s the part where it says that the cost will have to be 20% higher than even
full-priced brands that has me worried. I fear that when it comes to the typical
shopper looking at the prices in the store, that a claim of technical excellence is
not going to amount to much.” “I’ve been thinking about that,” said John. “We
have to make it clear in the ad campaign that the consumer would be paying more
for the detergent but would be saving much more than that in the long-term on the
cost of replacing clothes. I grant you that the average shopper will be skeptical,
but we hope that at least some segment of the market will understand the trade-off
and therefore buy our product.”

Susan knew that Elizabeth was excited about the new detergent because she
had helped develop it, and that John was looking forward to a challenge in writing
the ad copy. However, she also knew that only about one in ten new products
eventually succeeded in the market place. Thinking that the others would want to
proceed, she had come up with some approximate numbers. “I’m assuming that
for now at least, our market is Canada,” Susan said. “The United States is just
next door, with nearly ten times as many people, but we don’t have a distribution
network there, so the best that we could hope for in the States is a licensing agree-
ment several years down the road, if everything works out here first. For now,
we should see if this product will be profitable in the Canadian market alone.”
Elizabeth and John nodded their heads, and Susan continued. “If we try for the
whole Canadian market, the start-up costs would be about $800,000. After that
would come some revenue, whether the product turns out to be a success or not. A
success would bring in about $4,000,000, but a failure would provide only a tenth
of that. If success or failure were 50/50, I’d proceed, but the chance of success is
only one in ten.”

Elizabeth wondered how accurate Susan’s figures were. Perhaps if the start-up
costs could be lowered, or the revenues raised, or the probability of success raised,
the project would make sense. “Susan, your numbers are at best estimates. With
different numbers this project could go ahead.” “Sure,” replied Susan, “and with
different numbers the project could be even less viable than it is now. I’m not
saying that this new detergent couldn’t do well for us, but maybe we should try
to test-market this product before launching it into the entire Canadian market.”
John broke in when he heard this idea. “We did test-marketing when I was at
my former employer. Usually, if a product succeeded in the test-market, it did
well everywhere. There were exceptions, though. Chocolate-covered seaweed
did well when we tried it in Halifax, but bombed when we tried to go national –
you couldn’t give it away in Toronto. On the other hand, we test-marketed a new
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quick-cook rice in Regina, and it didn’t do well, but when on a hunch we went
ahead with a national campaign anyway, it suddenly became a success. It did best
in cities with large immigrant populations, and in hindsight we saw that Regina
wasn’t a good test-market for that kind of product.”

“You’ve hit on a good point, John,” said Susan, “the test-market should ideally
reflect the country as a whole, but that’s not always easy to do. Since advertising
is expensive, we concentrate on small geographic areas away from high-priced
media buys in large cities. For example, Pickering [just east of Toronto] would be
an expensive place to test-market, because we’d have to buy airtime on Toronto
stations and pay to reach eight million people in central southern Ontario, when
we only want to reach the ones who live in Pickering. In Ontario, Peterborough is
often used as a test-market because we can buy airtime just in Peterborough at a
reasonable price. For the same reason, test-marketing in Alberta is often done in
Lethbridge, which is large enough to have its own media outlets, but doesn’t have
the high rates that are found in Edmonton and Calgary.”

Elizabeth wondered aloud about some of John’s comments. “What does it
prove once we get the result from the test market? The detergent could be like
the chocolate-covered seaweed, or like the rice, rather than being a perfect pre-
dictor for what should be done.” “You’re right, Elizabeth,” replied Susan, “test-
marketing is not a perfect predictor, but it should give us a better idea of what
to do. If we believe that there’s one chance in ten of the product being a suc-
cess in the country, then there should be more-or-less a 10% chance of success in
any test-market. However, we know from past experience that people in British
Columbia are most open to new products, and this figure generally declines as one
heads east. If we just test in one market, I’d say that there’s about a 12% chance
of success in Lethbridge, about 10% chance of success in Peterborough, and just
8% in St. John’s. If we test in one of these places and it’s a failure, then the chance
of success in the rest of Canada certainly becomes less than 10% – I don’t know
how much less, but it really doesn’t matter. This project is tenuous enough as it
is, without having to deal with a negative test result. On the other hand, a success
in a test market would be a good omen for the rest of the country. As John said,
there’s no guarantee of success elsewhere, but I have to believe that on average
the chance of success has increased from 10% to say 60%, though I think that this
figure would range from 50% in Lethbridge to 70% in St. John’s. While the pur-
pose of the test-marketing is to obtain information, there would be some revenues
as well, perhaps $30,000 for a success, but only a tenth of that for a failure.”

“We could test in two of these markets, or perhaps even all three of them,”
Elizabeth suggested. “But if we test in two markets our advertising costs would
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double, and if we test in three these costs will triple,” John said. “Testing in
all three is probably not going to fly,” Susan said, “but a case could be made for
testing in two markets. I think that Lethbridge and St. John’s would give us a better
sense of the country as a whole than using either of these cities with Peterborough.
That brings us to the question of how we should use these two markets. Should
we test simultaneously in both, or should we test sequentially, beginning with one
of the two cities, and then based on what we find there, possibly proceeding to the
other?”

At this point Elizabeth jumped in. “Whatever we make in the lab, someone
else can make too. I worry that if we do the test marketing, a competitor will buy
a litre of it, have it chemically analyzed, and then reverse-engineer it in their own
labs. This would take some time, of course, but if we test in two markets, and
do it sequentially rather than simultaneously, we might just give them the time
that they need. After taking all the risk, we would then have to share the market
with someone else.” “Point taken,” said Susan. “If we test in both Lethbridge and
St. John’s, let’s agree that we will do the testing simultaneously. This gives us
four possibilities for the test results. If we fail in both places, we can forget about
proceeding further with this product. Should we succeed in both, I’m almost
certain that we would have a winner on our hands; I’d put the probability at 0.99.
If we fail in one, but succeed in the other, I would want to boost the advertising
expenditures by $50,000, and based on that I’d put our chances of success in the
rest of the country at about 35%.”

From his experience, John had some figures on test-marketing. “Before we
spend anything on advertising, we would have to spend about $15,000 to develop
an ad campaign. The three test markets aren’t much different in size. I’d say that
in each the cost to buy air time would be about $10,000.” Elizabeth wondered
if spending this money now would save some money later should they decide to
undertake a national campaign. “Here’s a hypothetical one for you, John. Suppose
that we test in Lethbridge and St. John’s, and both tests turn out to be a success,
so we decide to go national. Having spent $15,000 plus two times $10,000 for a
total of $35,000, can we deduct this amount from the $800,000 cost of the national
campaign?” “I wouldn’t count on that,” John replied. “We would probably want
to modify the test-market advertising, so that will cost money. More importantly,
when we buy national advertising, we obtain economies of scale by making one
nation-wide media buy. It would be cheaper to do it that way than to buy air
time in every city individually except where we test-marketed. I’d say that no
matter what we do with test-marketing, the cost of the national campaign would
be $800,000. At the same time, this would be a new campaign as far as the test-
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market is concerned, so the national revenues wouldn’t be diminished.”
“It’s time to wrap this up for this morning,” Susan said. “Senior management

will want to see a business plan, and the basis for this will be the recommendation
which will come from making a decision tree of what we’ve been discussing. I’ll
work on this later this morning, and we’ll meet again at 2 p.m. to discuss it.”

9.1.2 The EVPI

There are four pieces of uncertainty in the case: the result in each of the three
test markets; and the result of a national campaign. While it would be possible
to compute the EVPI based on knowing perfect information about any of these
four things, or any combination of these four things, it is the uncertainty about the
national campaign which is of primary importance.

We can find the EVPI for a decision about the national campaign in the ab-
sence of test-marketing. If we know that the product would be successful, then
clearly we would spend $800,000 to make $4,000,000, for a net of $3,200,000.
If we know that the product would be a failure, then clearly we would not spend
$800,000 to make only one-tenth of $4,000,000. i.e. $400,000. There is a 10%
chance of being told that a success will occur, and a 90% chance of being told that
a failure will occur, hence the EV with PI is:

0.10($3,200,000)+0.90(0) = $320,000

Without perfect information, and without test-marketing, we would not spend
$800,000 to obtain a 10% chance of making $4,000,000. Instead, we would aban-
don this project, with the payoff without perfect information being $0. Hence the
EVPI is:

EVPI = EV with PI−EV without PI
= $320,000−$0
= $320,000

Though we did not need to draw a tree to find the EV with PI, we can do so
if we wish. We begin with the event, being the prediction about the success or
failure of the national campaign, followed by the decision about whether or not to
proceed with the national campaign. Making this tree with payoffs in thousands
of dollars and performing the rollback we have:
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[The perfect
prediction for the]
Result of the
National
Campaign

����
���

���
���

HH
H
HH

H
HH

H

success
0.1

failure 0.9

National
Campaign

���
���

���

���
���

��proceed

XXXXXXXXX

XXXXXXXX

abandon
0

800 4000

3200

National
Campaign

���
���

���

���
���

��proceed

XXXXXXXXX

XXXXXXXX

abandon
0

800 400

0

320

Hence the EV with PI is $320,000, and then subtracting the EV without PI,
which is $0, we see that the EVPI is $320,000. The cost of test-marketing is less
than this figure, so we cannot rule out the possibility of using the test-marketing
(which we would have done if these costs had exceeded the EVPI). Hence we
need to continue with the analysis of this situation.

9.1.3 Formulation
We wish to develop and solve the decision tree to which Susan refers. It’s too
complicated to think of all the decisions and events at once in a long case like
this. Instead, we should think about what must come first. It is more-or-less obvi-
ous that the case presents us with at least four alternatives for the test-marketing:
Lethbridge only; Peterborough only; St. John’s only; and testing simultaneously
in both Lethbridge and St. John’s. The three persons seem to agree that other types
of multiple testing (sequential testing, or all three cities, or another pair of cities)
should not be considered, and we will therefore leave these options out of the
decision tree. At the other extreme, going directly to a national campaign with-
out doing any test-marketing was not clearly opposed by Elizabeth, so we might
wish to investigate this course of action. Also, we should consider doing nothing
whatsoever, which for many business situations may be best of all.

Based on the foregoing, we could begin with a square followed by six alterna-
tive branches: one for each of the four testing alternatives; one for proceeding to
national marketing directly; and finally a do-nothing alternative. Doing it this way
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Note: All financial information
is in thousands of dollars.
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would be correct, but things become clearer if we first have a test-marketing deci-
sion which has just two alternatives: test market; and do not test market. The first
of these alternatives then requires a decision about the manner of the test market-
ing. The second has a decision about the national campaign with two alternatives:
proceed with the national campaign; or do nothing. Aside from the clarity pro-
vided by this approach, it allows the $15,000 cost of preparing the test-market ad
campaign to be by itself on the test market alternative branch, with the advertising
costs being handled separately. If we proceed with the national campaign with no
test marketing, then this alternative is followed by a result event, with its two out-
comes: there is a 10% chance of making $4,000,000, and a 90% chance of making
$400,000. Because of space limitations all financial figures will be written on the
tree in thousands of dollars, hence for example $4,000,000 is written on the tree
simply as 4000.

The manner of the test marketing could be one decision with four alternatives,
but again it makes things conceptually easier if we have two decisions. First, we
decide whether we want one or two test markets. If one test market is chosen,
then we must decide whether it will be in Lethbridge, Peterborough, or St. John’s,
and if we want two test markets it is understood from the case that these will be in
Lethbridge and St. John’s, hence the event for the result on one of the test markets
comes next. In making the tree it turns out that we already have too much to put
on one piece of letter-size paper. Hence, on this piece of paper we end with two
nodes, one a decision node and one an event node, after alternative branches for
testing in one or two markets. Because the cost of test marketing is $10,000 per
market tested, we place $10,000 and $20,000 cost gates (written as 10 and 20) on
the test in one market and test in two markets alternative branches respectively.

The beginning of the tree is shown in Figure 9.1, on which two continuations
are indicated. The first of these occurs at the decision node for choosing between
Lethbridge, Peterborough, and St. John’s as the solitary test market. After each of
these comes a similar structure, with only some of the numbers being different.
First, there is a result event, with the test campaign in every city being either a
success or a failure. There is a payoff of $30,000 associated with a success, and
a payoff of $3000 associated with a failure. Since it is implied in the case that
a failure in a test market would immediately end the venture, all we need do is
put a ‘3’ (for $3000) at the end of every outcome branch which represents failure.
However, every ‘success’ outcome branch is treated differently. Because each of
these is followed by more tree structure, we handle the $30,000 in revenue by
using a payoff node followed by a null branch. On the null branch we place a cost
gate, with the figure placed in parenthesis indicating that we have a revenue rather
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than a cost. Hence a revenue of $30,000 is indicated as:

������@@
(30)

When the tree is rolled-back, the ‘30’ is added to the number on the right of the
null branch to obtain the number at the payoff node. After every null branch comes
a decision about the national campaign, and then a result event if the ‘proceed’
alternative is followed. The tree structure of the first continuation is shown in
Figure 9.2.



400 CHAPTER 9. DECISION ANALYSIS II

C
on

tin
ue

d
fr

om
Fi

gu
re

9.
1

C
ity
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
��

Leth
bri

dg
e

Pe
te

rb
or

ou
gh

@
@
@
@
@
@
@
@ @

@
@
@
@
@
@
@
@ @

St. J
oh

n’s

L
et

hb
ri

dg
e

R
es

ul
t

Pe
te

rb
or

ou
gh

R
es

ul
t

St
.J

oh
n’

s
R

es
ul

t

����
�

�
�

�
�
�

�
�

X
X

X
X

X
X

X
X

su
cc

es
s

0.
12

fa
ilu

re
0.

88

����
�

�
�
�

�
�

�
�

X
X

X
X

X
X

X
X

su
cc

es
s

0.
10

fa
ilu

re
0.

90

����
�

�
�
�

�
�

�
�

X
X

X
X

X
X
X

X

su
cc

es
s

0.
08

fa
ilu

re
0.

92

���� ��@ @ ���� ��@ @ ���� ��@ @3 3 3

(3
0)

(3
0)

(3
0)

N
at

io
na

l
C

am
pa

ig
n

N
at

io
na

l
C

am
pa

ig
n

N
at

io
na

l
C

am
pa

ig
n�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�

pr
oc

ee
d

X
X
X
X
X
X
X
X X

X
X
X
X
X
X
X
X

ab
an

do
n

�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�

pr
oc

ee
d

X
X
X
X
X
X
X
X X

X
X
X
X
X
X
X
X

ab
an

do
n

�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�

pr
oc

ee
d

X
X
X
X
X
X
X
X X

X
X
X
X
X
X
X
X

ab
an

do
n

0 0 0

80
0

80
0

80
0

���� ���� ����R
es

ul
t

R
es

ul
t

R
es

ul
t

�
�
�

�
�
�

�
�

X
X
X

X
X
X

X
X

su
cc

es
s

0.
5

fa
ilu

re
0.

5

�
�
�

�
�
�

�
�

X
X
X

X
X
X

X
X

su
cc

es
s

0.
6

fa
ilu

re
0.

4

�
�
�

�
�
�

�
�

X
X
X

X
X
X

X
X

su
cc

es
s

0.
7

fa
ilu

re
0.

3

40
00 40

0

40
00 40

0

40
00 40

0

Fi
gu

re
9.

2:
N

ew
D

et
er

ge
nt

C
as

e:
Fi

rs
tC

on
tin

ua
tio

n



9.1. DECISION TREE WITH PAYOFF NODES 401

C
on

tin
ue

d
fr

om
Fi

gu
re

9.
1

L
et

hb
ri

dg
e

R
es

ul
t ����

�
�
�
��

�
�

�
� �

����

@
@
@
@ @

@
@

@
@@

����

su
cc

ess
0.1

2

fai
lur

e
0.8

8

St
.J

oh
n’

s
R

es
ul

t

St
.J

oh
n’

s
R

es
ul

t

���� ���� ���� 6

��@ @ ��@ @ ��@ @

�
�
�
��

�
�
�

� �

H
H
H
H H

H
H
H

HH

�
�
�
��

�
�
�

� �

H
H
H
H H

H
H
H

HH

su
cc

es
s

0.
08

fa
ilu

re
0.

92

su
cc

es
s

0.
08

fa
ilu

re
0.

92

(6
0)

(3
3)

(3
3)

N
at

io
na

l
C

am
pa

ig
n

N
at

io
na

l
C

am
pa

ig
n

N
at

io
na

l
C

am
pa

ig
n�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�

pr
oc

ee
d

X
X
X
X
X
X
X
X X

X
X
X
X
X
X
X
X

ab
an

do
n

�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�

pr
oc

ee
d

X
X
X
X
X
X
X
X X

X
X
X
X
X
X
X
X

ab
an

do
n

�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�

pr
oc

ee
d

X
X
X
X
X
X
X
X X

X
X
X
X
X
X
X
X

ab
an

do
n

0 0 0

80
0

85
0

85
0

���� ���� ����R
es

ul
t

R
es

ul
t

R
es

ul
t

�
�
�

�
�
�

�
�

X
X
X

X
X
X

X
X

su
cc

es
s

0.
99

fa
ilu

re
0.

01

�
�
�

�
�
�

�
�

X
X
X

X
X
X

X
X

su
cc

es
s

0.
35

fa
ilu

re
0.

65

�
�
�

�
�
�

�
�

X
X
X

X
X
X

X
X

su
cc

es
s

0.
35

fa
ilu

re
0.

65

40
00 40

0

40
00 40

0

40
00 40

0

Fi
gu

re
9.

3:
N

ew
D

et
er

ge
nt

C
as

e:
Se

co
nd

C
on

tin
ua

tio
n



402 CHAPTER 9. DECISION ANALYSIS II

The second continuation comes after the alternative of testing in two markets.
Since the places of these markets have been stated in the case as being Lethbridge
and St. John’s, we next have the result events for these two markets. Here is an
example where the order does not matter – it can either be the Lethbridge result
event followed by the St. John’s result event, or vice versa. In real life, these
results would be announced more-or-less simultaneously. This is why the payoffs
are combined – for example, if we are successful in both markets, then $60,000
in revenue (i.e. $30,000 from each place) is obtained. If one is a success, but the
other is a failure, then $30,000 + $3000 = $33,000 is obtained. Finally, if both are
failures then the revenue is $6000 (i.e. $3000 from each place).

The rest of the tree is similar in structure to the first continuation, but we note
that the cost of a national campaign after one failing test market is now $800,000
+ $50,000 = $850,000. The second continuation of the tree is shown in Figure 9.3.

9.1.4 Solution and Recommendation
We perform the rollback beginning with the first continuation. This is shown on
Figure 9.5. Next, we perform the rollback for the second continuation. This is
shown on Figure 9.6. At the extreme left, we obtain the figure 188.2224. The
question arises as to how many decimal places we should report. Because the
figures are in thousands of dollars, this figure represents $188,222.40, so at least
we aren’t trying to report a fraction of a cent. Even so, some would argue that
it’s pretentious to report any figure closer than say the nearest ten dollars. My
preference is to do things accurately, and then round the final answer, should that
be desirable. It turns out in this example that the final answer is unaffected by this
figure anyway.

The figures from the extreme left of the first and second continuations are then
transferred to the initial part of the tree. That part of the tree is then rolled back,
as shown in Figure 9.4.

Recommendation Make the ads for a test market campaign, and run this cam-
paign in Peterborough. If this turns out to be a success, then proceed with the
national campaign. If the test campaign turns out to be a failure, then abandon the
project. The ranking payoff is $156,700.
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Note: All financial information
is in thousands of dollars.
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9.2 Decision Trees without Revenues

In this section we consider an example which contains only costs.

9.2.1 Airline Ticket: Problem Description

An office manager in St. John’s has been informed that a compulsory company-
wide meeting might need to be held in Vancouver in fifteen days time. At the
present time, there is about a 30% chance that the meeting will go ahead. There
is about a 40% chance that in about five days from now they will know for sure
whether or not the meeting will be held. If they still are not sure at that point, then
there’s still, as there is now, only a 30% chance that the meeting will go ahead.
There is a 100% chance that in ten days time they will know for sure about the
meeting one way or the other.

A full-fare economy return ticket, which would cost $3500, could be pur-
chased as late as the day of the trip. Another option would be to buy a non-
refundable ticket for $1300 which must be purchased at least seven days before
departure. Another choice is to buy a non-refundable seat-sale ticket for $800,
which would have to be purchased no later than tomorrow. Assuming that a non-
refundable ticket would be worthless should the meeting not go ahead, develop
and solve a decision tree to analyze the manager’s problem.

9.2.2 Formulation

This example only mentions costs, not revenues, so if we put all the numbers onto
the tree as we did in the previous section we will be rolling back negative num-
bers. Instead of dealing with negative numbers, we could write costs on the tree
as positive numbers, and rollback the tree as before, except that at each square, we
would choose the alternative with the lowest cost. We will solve this problem us-
ing this alternate approach; the final tree will have all financial information being
the absolute value of what we would have had if we had not used this approach.

While there is a fifteen day continuum of time in this problem, only certain
points in time are relevant. If we call today day 0, then there is the possibility of
more information on day 5; if there’s no announcement on day 5, then there will
be an announcement on day 10. To attend a meeting on day 15, the manager must
fly across the country no later than day 14. Then there are the deadlines for the
purchase of the various classes of tickets: day 1 for the $800 ticket; day 7 for the
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$1300 ticket; and day 14 for the full-fare $3500 ticket. Hence our focus should be
on days 1, 5, 7, 10, and 14.

While the $3500 ticket can be purchased at any time, there is no advantage to
purchasing it early. If the ticket is bought early, then a few days extra interest is
charged, and more importantly, there would be the hassle of returning the ticket
should the trip become unnecessary. If the few days interest is not important, then
the ticket could be bought after day 10. There is no sense in buying a $1300 ticket
today or tomorrow, because an $800 ticket is available during this time with the
same privileges. After tomorrow, the office manager might as well wait until at
least the end of day 5 to possibly obtain more information. Hence the $800 seat-
sale ticket would be bought on days 0 or 1 (or not at all), the $1300 7 day advance
ticket would be bought on days 6 or 7 (or not at all), and the $3500 full-fare ticket
would be bought on days 11 to 14 inclusive (or not at all).

At the outset, the manager could buy an $800 ticket, or he could wait five
days for more information. Hence the tree begins with two alternatives; there
are no further branches after the alternative branch to buy a seat-sale ticket for
$800. Because this is a final branch, and because we are writing costs as positive
numbers, we do not need a cost gate – all we need to do is write 800 to the right
of the branch. The wait five days option, however, then has an event with two
outcomes: an announcement is made; or no announcement is made. The tree so
far is:

Note: All financial
figures are costs.

Seat-Sale
Ticket
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After the outcome branch for the announcement being made there is an event
with two outcomes: the meeting will go ahead, or it will not go ahead. It is
possible, but not advisable, to combine the two events into one event with three
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outcomes: the meeting will go ahead; it will not go ahead; and no announce-
ment. Doing it this way would shorten the tree, but it would require computing
some joint probabilities – this confuses the formulation process with the solution
process. We will therefore write what is happening as two events.

After the “will go ahead” outcome branch, we could have a square with two
alternatives, one for buying a 7 day advance ticket, and one for buying a full-fare
ticket for $3500. However, it is obvious that the manager should buy a 7 day
advance ticket for $1300, so we will only draw this alternative. After the “will
not go ahead” outcome branch, no action needs to be taken, so we simply write a
payoff of 0 to the right of this branch.
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If there’s no announcement after five days, then our choices are to either buy
a 7 day advance ticket or wait another five days. If the latter is chosen, then an
event occurs giving information about the meeting. After the “go ahead” branch,
the manager must buy a full-fare ticket; after the “will not go ahead” branch, no
action is required.

The entire tree, printed in landscape form, appears in Figure 9.7. Because the
financial information is all costs, a note has been placed on the figure to that effect.

9.2.3 Solution
To rollback the tree, we need to choose the lowest cost at each square. With this
modification, the rolled-back tree appears in Figure 9.8. The recommended course
of action can be followed on the tree, but the analyst should also make the rec-
ommendation by clearing stating it in words. In trees with multiple decisions, we
often use the term ranking profit (or ranking cost in this example) to indicate that
the number being presented is a mixture of measures (best at a square, expected
value at a circle). This is reported along with the best course of action.

9.2.4 Recommendation
Do not buy the $800 seat-sale ticket, but instead wait to see if there’s an announce-
ment in five days time. If there’s an announcement that the meeting will go ahead,
then buy a $1300 7 day advance ticket at that time. If there’s an announcement
that the meeting is not going ahead, then do nothing. If there’s no announcement
after five days, then wait for a further announcement. If the meeting is going
ahead, then buy a $3500 full-fare ticket; otherwise, do nothing. The ranking cost
is $786.

Although the $786 figure is the most important one on the tree, the other
rolled-back numbers are also important, because they give the ranking cost to be
incurred for proceeding further down that path. For example, if an announcement
is not made after five days, then the ranking cost increases from $786 to $1050.

9.2.5 The EVPI
In this example we need to find the expected cost with perfect information (EC
with PI). If at the outset we were to receive perfect information that the meeting
will be going ahead, then we would buy the seat-sale ticket for $800, otherwise
we would do nothing. The chance that we will be told that the meeting will be
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going ahead is 30%, hence EC with PI = 0.3(800) + 0.7(0) = $240. The expected
cost without information is $786. We subtract to find the EVPI, in reverse order
because these are costs.1

EVPI = EC without PI − EC with PI
= $786−$240
= $546

9.3 Decision Making with Bayesian Revision

9.3.1 Introduction

Bayesian revision is a procedure for determining conditional probabilities in the
reverse order to which they are initially known. In this and the next section, we
examine decision trees for which the use of Bayesian revision is needed in order
to compute some of the probabilities. Starting with a problem description, we
begin to develop the decision tree, except that not all of the probabilities can be
written down immediately. We then perform a Bayesian revision to find these
probabilities, and then transfer these numbers to the decision tree. The tree is then
rolled-back to obtain a recommendation for the situation.

There are two methods for performing Bayesian revision. One way involves
making three tables. The table method is what should be used if these calculations
are to be performed on a spreadsheet. A second method involves making what are
called prior and posterior trees. This is a visual approach suitable to computations
by hand. We will show both these methods in detail.

9.3.2 Seismic Testing Problem Description

An oil exploration company has identified a site under which there may be a
pocket of oil. The probability that oil exists at this location is 1%. It would
cost $3,000,000 to drill for oil. If the oil exists, it would be worth $40,000,000. A
seismic test is available which would cost $40,000. The result of the test would
be one of the following: “positive”, “inconclusive”, or “negative”. If there really
is oil present, then there is a 60% chance of a positive reading, a 30% chance of
an inconclusive reading, and a 10% chance of a negative reading. If there’s no

1This is the same as saying that the EVPI is −$240− (−$786) = $546.
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oil at that location, then there’s a 0.04 probability of a positive reading, and a 0.2
probability of an inconclusive reading.

We wish to develop a decision tree for this situation, and solve it to obtain a
recommendation for the oil exploration company.

9.3.3 Problem Formulation

There are two decisions to be made in this situation. What we might call the major
decision is whether or not to spend $3,000,000 drilling for oil. The other decision
is whether or not to spend $40,000 to do the seismic test. The purpose of the
seismic test is to obtain information which would help us with the major decision.
We will call the decision about the seismic test the information decision.

Not just in this situation, but in all problems of this type, the information deci-
sion must precede the major decision. Indeed, the information decision precedes
everything else. This decision, with its two alternatives, is as follows:
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If the seismic test is not done, then this becomes an easy problem. We must
choose whether or not to drill at a cost of $3,000,000, and if we drill we then have
an oil event with two outcomes: oil is present with probability 0.01; and oil is not
present with probability 0.99. Adding these things to the tree we obtain:
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In problems of this type, it is sometimes useful to find the EVPI before consid-
ering the possibility of obtaining more information. Then, if it turns out that the
cost of obtaining information is higher than the EVPI, then we can eliminate the
alternative to seek information. We note that in the preceding tree, if we rollback
the top part we would obtain $400,000 at the Oil Event circle, and then $0 at the
Drilling for Oil square. Now suppose that we reverse the order of the decision and
the event in order to find the EV with PI. In this case, the EV with PI is:

0.01(40,000,000−3,000,000)+0.99(0) = 370,000

Since the EV without PI was $0, the EVPI is also $370,000. The cost of the
seismic test, which is $40,000, is much less than $370,000. Hence, the seismic
test cannot be trivially eliminated.

After the alternative to do the seismic test, comes the seismic test event, with
its three outcomes: positive; inconclusive; and negative. This is an example of a
common pattern in this type of problem – an alternative of the information deci-
sion for which information is sought is followed by an information event, which
in turn is followed by the major decision. When we draw the outcome branches
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for this situation, we cannot immediately write the probabilities, for we do not
know what they are. We will find them later using Bayesian revision, and will
then transfer these numbers to the decision tree. Adding these outcome branches
we obtain:
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At this point, a fair bit of repetition appears in the rest of the tree. After each
of the outcomes of the seismic test event, there is the decision about drilling.2 If
the drilling is done, it is followed by the oil event. This of course is like what

2Note that we consider the “drill” alternative even after a “negative” seismic test. This is
because the information is not perfect, so there is a chance that doing the non-obvious thing may
be right.
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we have already drawn at the top of the tree, but there’s one important exception.
The probabilities of oil and no oil are not 0.01 and 0.99 as they were before.
Instead, these are now conditional probabilities, and they must be calculated using
Bayesian revision. The decision tree with the probabilities absent on the bottom
part of the tree is shown in Figure 9.9. To reduce the clutter on this part of the
tree, the words “Drilling for Oil” and “Oil Event” only appear once rather than in
all three places.

9.3.4 Bayesian Revision
Now, we must do the Bayesian revision. We begin by showing the table method.

The event for which the marginal probabilities are known is that of the pres-
ence of oil. These probabilities are 0.01 for the existence of oil at that location, and
0.99 for the absence of oil. For the other event, the seismic testing, we have prob-
abilities (given in the problem description) which are conditional on whether there
is or is not oil in the ground. These probabilities, and the two marginal probabili-
ties, are given in the following table. Note that since one of the three outcomes of
the seismic test must occur, we find P(negative/no oil) as 1−(0.04+0.20) = 0.76.

Seismic Event
positive inconclusive negative

Oil oil 0.60 0.30 0.10 0.01
Event no oil 0.04 0.20 0.76 0.99

Multiplying the conditional probabilities by the marginal probabilities of the oil
event we obtain the joint probabilities. Some of the joint probabilities require four
places after the decimal, so all are shown this way so that they line up properly.
Summing the joint probabilities in each column gives the marginal probabilities
of the seismic test event. The second table is:

Seismic Event
positive inconclusive negative

Oil oil 0.0060 0.0030 0.0010 0.01
Event no oil 0.0396 0.1980 0.7524 0.99
P(seismic result) 0.0456 0.2010 0.7534
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Finally, dividing the joint probabilities by the marginal probabilities under-
neath we obtain the posterior conditional probabilities. The third table using five-
place decimals is:

Seismic Event
positive inconclusive negative

Oil oil 0.13158 0.01493 0.00133
Event no oil 0.86842 0.98507 0.99867

P(seismic) 0.0456 0.2010 0.7534

We read this as P(oil/positive) = 0.13158, P(no oil/positive) = 0.86842, and so on.
These figures, even though there are five-place decimals, are approximations

of exact fractions. If we wish, we can use fractions instead. If this is done, it makes
sense to remove the decimals from the numerator and the denominator. However,
it does not make sense to reduce the fraction to the lowest common denominator,
as this only adds work. For example, instead of calculating the decimal quantity
0.01493, we could have expressed 0.0030 divided by 0.2010 as the fraction 3

201 ,
but we need not reduce this fraction to 1

67 . As unreduced fractions the third table
is:

Seismic Event
positive inconclusive negative

Oil oil 60
456

3
201

10
7534

Event no oil 396
456

198
201

7524
7534

P(seismic) 0.0456 0.2010 0.7534

The concern about accuracy may seem to be misplaced when all the original
probabilities in the first table are approximations anyway. However, some of the
probabilities will be multiplied by large numbers, specifically the $40,000,000
figure. Here’s what happens depending on the level of accuracy when we approx-
imate 60

456 using decimals. The decimal expansion is 0.13157947... When mul-
tiplied by $40,000,000, we obtain (to the nearest cent) $5,263,157.90. If we ap-
proximate the decimal we obtain (using rounding) 0.132 for three places, 0.1316
for four places, and 0.13158 for five places. The values of these numbers times
$40,000,000, and the differences between these values and the theoretical value
are:
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Value Value × $40,000,000 Variation
0.13157947... $5,263,157.90 –
0.13158 $5,263,200.00 $42.10
0.1316 $5,264,000.00 $842.10
0.132 $5,280,000.00 $16,842.10

These variations are what would be present at the “Oil Event” node which
comes after a “positive” outcome for the seismic test. By the time everything is
rolled back, the error would be diminished, but it would still be considerable. Such
errors can be avoided by storing all probabilities in the calculator’s memory, so
that the nearly exact value is used, even if only five decimal places are written out
in full – doing it this way is equivalent to using fractions. For student use, either
doing it that way or the use of five decimal places (rounded) is recommended. At
the very least, one should use four decimal places (rounded); using only three can
cause substantial errors.

A big advantage of the table method over the method of prior and posterior
trees, is that the table method is easily adapted to Excel. Here is the table method,
showing the formulas (entered into C9, C11, C15, and then copied) needed to
compute the numbers in the second and third tables:
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1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

A B C D E F

Seismic Event

Positive  Inconclusive Negative Prob.

Oil Oil 0.6 0.3 0.1 0.01

Event No oil 0.04 0.2 0.76 0.99

Seismic Event

Positive  Inconclusive Negative Prob.

Oil Oil =C4*$F4 =D4*$F4 =E4*$F4 0.01

Event No oil =C5*$F5 =D5*$F5 =E5*$F5 0.99

Prob. =SUM(C9:C10) =SUM(D9:D10) =SUM(E9:E10)

Seismic Event

Positive  Inconclusive Negative Prob.

Oil Oil =C9/C$11 =D9/D$11 =E9/E$11 0.01

Event No oil =C10/C$11 =D10/D$11 =E10/E$11 0.99

Prob. =C11 =D11 =E11

The numerical values are:
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1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

A B C D E F

Seismic Event

Positive  Inconclusive Negative Prob.

Oil Oil 0.60 0.30 0.10 0.01

Event No oil 0.04 0.20 0.76 0.99

Seismic Event

Positive  Inconclusive Negative Prob.

Oil Oil 0.0060 0.0030 0.0010 0.01

Event No oil 0.0396 0.1980 0.7524 0.99

Prob. 0.0456 0.2010 0.7534

Seismic Event

Positive  Inconclusive Negative Prob.

Oil Oil 0.131579 0.014925 0.001327 0.01

Event No oil 0.868421 0.985075 0.998673 0.99

Prob. 0.0456 0.2010 0.7534

Before transferring these probabilities to the decision tree, we will look at the
prior and posterior tree method of performing Bayesian revision. This method
takes a little bit longer to do, but it’s conceptually easy because it mimics a subset
of the decision tree. We work with two probability trees, called the prior tree and
the posterior tree.

Both the prior and posterior trees contain two events. The prior tree (which is
done first) has the two events of the decision tree in the reverse order of how they
appear in the decision tree. The posterior tree (which is done after completing the
prior tree) has the two events in the reverse order of how they appear in the prior
tree. Equivalently, the posterior tree has the two events in the same order as they
appear in the decision tree.

For this example, the two events of the decision tree are the seismic test event
and the oil event, in that order. Since the prior tree contains these events in reverse
order, the prior tree consists of the oil event followed by the seismic test event.
Writing the outcomes of the oil event with their marginal probabilities, and the
three outcomes of the seismic test event with their conditional probabilities, gives
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us the following picture.
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On this tree we write the joint probabilities at each node and at the ends of the
branches. The node on the left begins with a probability of 1, meaning that it is
certain that something will occur. For any outcome branch on the tree, the joint
probability at the ending node (on the right) is the joint probability at the beginning
node (on the left) multiplied by the probability (be it marginal or conditional) on
that outcome branch. For example, the joint probability at the top seismic test
event node is 1 (the joint probability at the oil event node) multiplied by 0.01
(the marginal probability along the “oil” outcome branch, which is simply 0.01).
Similarly, the joint probability at the bottom seismic test event node is 0.99. So
far, everything is trivial.

The joint probability at the end of the top “positive” branch equals 0.01 (the
joint probability at the seismic test event node) multiplied by 0.6 (the conditional
probability along the “positive” outcome branch), which is 0.006. Similarly, the
joint probabilities at the end of the top “inconclusive” and “negative” outcome
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branches are 0.01(0.3) = 0.003 and 0.01(0.01) = 0.001 respectively. The joint
probability at the end of the bottom “positive” branch equals 0.99 (the joint proba-
bility at the seismic test event node) multiplied by 0.04 (the conditional probability
along the “positive” outcome branch), which is 0.0396. Similarly, the joint proba-
bilities at the end of the bottom “inconclusive” and “negative” outcome branches
are 0.99(0.20) = 0.1980 and 0.99(0.76) = 0.7524 respectively.

Comparing this approach with the table method, it is seen that the prior tree is
simply a visual way of displaying the information which appears in the first table
and in part of the second table. Adding the joint probabilities the completed prior
tree is:
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0.99
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0.003
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0.0396

0.1980

0.7524

The sum of the joint probabilities on the extreme right of the tree must sum to
1, so it is wise to verify this fact before proceeding to the posterior tree.

.006+ .003+ .001+ .0396+ .1980+ .7524 = 1.000
√

This sum doesn’t have to be written out as it is here, but a calculator should be
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used to verify that sum is 1. Whenever the sum is not 1, it means that an error has
been made, which needs to be corrected before proceeding further.

As stated earlier, the posterior tree contains the same events, but in reverse
order. For this problem, the posterior tree begins with the seismic test event, which
is followed by the oil event. We begin drawing the posterior tree by outlining
its shape; the probabilities need to be computed by transferring the final joint
probabilities from the prior tree. The shape of the tree is:
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Throughout the development of the decision, prior, and posterior trees, we
have maintained consistency in the vertical ordering of the outcomes. We have
always placed “oil” above “no oil”, and “positive” above “inconclusive” which
in turn is above “negative”. This consistency will help us when transferring the
joint probabilities from the prior tree to the posterior tree, and when transferring
marginal and conditional probabilities from the posterior tree to the decision tree.

The final joint probabilities on the prior and posterior trees are the same, ex-
cept that they are placed in a different order. The first (top) joint probability on the



9.3. DECISION MAKING WITH BAYESIAN REVISION 425

posterior tree is the joint probability of “positive” and “oil”. This is numerically
the same as the joint probability of “oil” and “positive”, which is found on the
prior tree (at the top), and its value is 0.006.

The second (from the top) joint probability on the posterior tree is the joint
probability of “positive” and “no oil”. This is numerically the same as the joint
probability of “no oil” and “positive”, which is found on the prior tree (fourth
from the top), and its value is 0.0396. Placing these values on the posterior tree
we have:

�����
�
�
�
�
�
�
�
�

po
sit

ive

����

inconclusive ����
@
@
@
@
@
@
@
@
@

negative

����

���������

PP
PP

PP
PPP

���������

PP
PP

PP
PPP

���������

PP
PP

PP
PPP

oil
no oil

oil
no oil

oil
no oil

0.006

0.0396

Going to the third place, we need the joint probability of “inconclusive” and
“oil”, which from the prior tree is seen to be 0.003. Because of the consistent
vertical labelling of the outcomes, a nice pattern emerges. The top three joint
probabilities on the prior tree become the joint probabilities at the top of each pair
of outcomes on the posterior tree, and the bottom three joint probabilities on the
prior tree become the joint probabilities at the bottom of each pair of outcomes on
the posterior tree.
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Though the patterns differ from one Bayesian revision to the next, there will
always be a type of pattern to find whenever the outcomes have been labelled
consistently. If there is any doubt, remember that for each joint probability the
words on the outcomes of the prior and posterior trees must match up (in reverse
order).

Completing the remaining four joint probabilities the posterior tree becomes:
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After transferring the ending joint probabilities from the prior tree, the next
step is to compute the other joint probabilities on the posterior tree. This is done
simply by addition. At the top oil event node, we add 0.006 and 0.0396 to obtain
0.0456, at the middle node we add 0.003 and 0.198 to obtain 0.201, and at the
bottom the sum of 0.001 and 0.7524 is 0.7534. Each of these numbers is written
next to its corresponding event node. Then, taking the numbers we have just
computed, we sum them to obtain

0.0456+0.201+0.7534 = 1.0000
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This number 1 is written next to the left-hand node. It is always true that we should
obtain a 1 next to this node, so this acts as a check on our calculations. Had we not
obtained a 1, this would have indicated that an error had been made. The prob-
ability on every outcome branch is obtained by dividing the ending (right-side)
joint probability by the beginning (left-side) joint probability. For the outcomes
on the left-side event, these are just the ending joint probabilities divided by 1,
producing the same numbers. Doing this much the posterior tree becomes:

�����
�
�
�
�
�
�
�
�

po
sit

ive
0.0

45
6
����

inconclusive
0.201 ��
��

@
@
@
@
@
@
@
@
@

negative
0.7534

����

���������

PP
PP

PP
PPP

���������

PP
PP

PP
PPP

���������

PP
PP

PP
PPP

oil
no oil

oil
no oil

oil
no oil

0.006

0.0396

0.003

0.198

0.001

0.7524

0.0456

0.201

0.7534

1

At this point we have found all the information in the second table of the table
method of Bayesian revision. We now complete the Bayesian revision on the
posterior tree, which provides the information found on the third table.

We continue the process of dividing joint probabilities, which provides the
conditional probabilities. Starting with the top oil event (which comes after a
“positive” outcome for the seismic test), the conditional probability of oil is com-
puted as

P(oil/positive) =
0.006

0.0456
≈ 0.13158
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As stated earlier, we may wish to give the exact value by writing the conditional
probability as an unreduced fraction, i.e. 60

456 . Writing all six conditional probabil-
ities rounded to five decimal places the posterior tree becomes:
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While we have developed the prior and posterior trees slowly to illustrate the
process, when doing this in practice all that is needed is a single sheet of paper on
which both trees are written. This is shown in Figure 9.10.

This methodology for performing Bayesian revision is entirely optional. How-
ever, the reader should try both methods on a couple of problems before making
this decision. When one becomes used to both methods, there really isn’t much
difference in time.

The main advantage of the table approach is that it can be done on a spread-
sheet (though this is of no help on a test). The main advantage of the tree method
is that it ties in nicely with the decision tree for which the Bayesian revision is
being performed. Once the posterior tree has been completed, it is very easy to
see where to transfer the marginal and conditional probabilities onto the decision
tree.
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To review, the steps involved in making the prior and posterior trees are:

1. Taking the events from the decision tree in reverse order, make the prior tree
showing its shape, putting labels on the outcomes, and write the marginal
and conditional probabilities.

2. Using multiplication, find all the joint probabilities on the prior tree, and
verify that they sum to 1.

3. Taking the events from the prior tree in reverse order, make the posterior
tree showing its shape, and put labels on the outcomes.

4. Transfer the final (right side) joint probabilities from the prior tree to the
appropriate places (i.e. matching pairs of outcomes) on the right side of the
posterior tree.

5. Using addition, find the other joint probabilities, and verify that the initial
(extreme left side) joint probability is 1.

6. For every outcome branch, find the probability on the branch by dividing
the joint probability at the end of the branch by the joint probability at the
beginning of the branch.

9.3.5 Solution and Recommendation
Now we can complete the formulation of the decision tree. Again, the consistency
in the vertical labelling of the outcomes makes the transfer of the marginal and
conditional probabilities from the posterior tree to the decision tree very easy.
With Figures 9.9 and 9.10 in hand, we can easily see what needs to be transferred
where. The events are in the same order, the difference being that in the decision
tree there is a decision between the two events.

There are a total of three marginal probabilities, and six conditional probabili-
ties, to be transferred from the posterior tree to the decision tree. (Alternatively, if
the table method is used, we transfer these numbers from the third table.) Doing
this, we obtain the decision tree shown in Figure 9.11.



9.3. DECISION MAKING WITH BAYESIAN REVISION 431

Se
is

m
ic

Te
st

in
g �
�
�
�
�
�
�
��

�
�
�
�
�
�
�
��

no
sei

sm
ic

@
@
@
@
@
@
@
@ @

@
@
@
@
@
@
@
@ @

sei
sm

ic
tes

t

�
�

40
,00

0

D
ri

lli
ng

fo
rO

il
!
!
!
!
!
!
!
!!

!
!
!
!
!
!
!
!

LLL
3,

00
0,

00
0 dr
ill

a
a
a
a
a
a
a
a a

a
a
a
a
a
a
a
a

do
no

t d
ril

l
0����

O
il

E
ve

nt
�

�
�
�

�
�
�

�

X
X

X
X

X
X
X

X

oi
l

0.
01

no
oi

l
0.

99

40
,0

00
,0

00

0

����Se
is

m
ic

E
ve

nt �
�
�
�
�
�
�
�
��

@
@
@
@
@
@
@
@
@ @

po
sit

ive
0.0

45
6

in
co

nc
lu

si
ve

0.
20

1

ne
ga

tiv
e

0.7
53

4

!
!
!
!
!
!
!
!!

!
!
!
!
!
!
!
!

LLL
3,

00
0,

00
0 dr
ill

a
a
a
a
a
a
a
a a

a
a
a
a
a
a
a
a

do
no

t d
ril

l
0����

O
il

E
ve

nt
�

�
�
�

�
�
�

�

X
X

X
X

X
X
X

X

oi
l

0.
13

15
8

no
oi

l 0
.8

68
42

40
,0

00
,0

00

0

D
ri

lli
ng

fo
rO

il
!
!
!
!
!
!
!
!!

!
!
!
!
!
!
!
!

LLL
3,

00
0,

00
0 dr
ill

a
a
a
a
a
a
a
a a

a
a
a
a
a
a
a
a

do
no

t d
ril

l
0����

�
�

�
�

�
�
�

�

X
X

X
X

X
X
X

X

oi
l

0.
01

49
3

no
oi

l 0
.9

85
07

40
,0

00
,0

00

0

!
!
!
!
!
!
!
!!

!
!
!
!
!
!
!
!

LLL
3,

00
0,

00
0 dr
ill

a
a
a
a
a
a
a
a a

a
a
a
a
a
a
a
a

do
no

t d
ril

l
0����

�
�

�
�

�
�
�

�

X
X

X
X

X
X
X

X

oi
l

0.
00

13
3

no
oi

l 0
.9

98
67

40
,0

00
,0

00

0

Fi
gu

re
9.

11
:S

ei
sm

ic
Te

st
in

g
–

D
ec

is
io

n
Tr

ee
w

ith
R

ev
is

ed
Pr

ob
ab

ili
tie

s



432 CHAPTER 9. DECISION ANALYSIS II

This tree is then rolled-back to obtain a recommendation. The rolled-back tree
is shown in Figure 9.12. The conditional probabilities are shown to five-place
accuracy, and the rolled-back payoffs are shown to the nearest dollar, but in fact
all this information was stored to the accuracy of the calculator.

Recommendation Do the seismic test. If the result is “positive”, then drill for
oil; otherwise, do not drill. The ranking payoff is $63,200.
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9.4 Decision Making with Sequential Bayesian Re-
vision

9.4.1 Introduction

In this section we look at sequential Bayesian revision. This is used when new
information is used to revise the probabilities, and then more new information
arrives. This necessitates a second revision of the probabilities. The example is
quite long, so it has been analyzed one paragraph at a time. Part A can be solved
simply by using a payoff matrix. From this we can find the EVPI, which gives an
upper bound to the expected value of any information. We see that the cost of this
information is less than the EVPI, so in Part B we proceed with making a decision
tree to analyze this situation. This leads to a decision tree and prior and posterior
trees which are very similar to those of the oil drilling example of the previous
section. Then in Part C we present the concept which is new to this section.

9.4.2 Wood Finishers: Problem Description

Wood Finishers produces a line of executive-type office desks. A high quality
desk nets a profit of $1000. A low quality desk, however, due to refunds and loss
of customer goodwill, has a net loss of $6000. (High or low quality does not refer
to the visible part of the desk, which is always of high quality, but rather to the
ability to endure years of use.) Ninety-six per cent of the production is of high
quality. Adding a rework section to the assembly line would guarantee that each
desk would be of high quality, but this would cost $400 for each desk reworked.

Suppose that the company can inspect each desk at a cost of $50 (per desk)
before deciding whether or not to rework it. The results of the inspection at this
station would be one of the following: “looks well,” “inconclusive,” or “looks
poorly.” If the inspected desk is of high quality, then there is a 70% chance that
the inspection will indicate “looks well,” a 20% chance that the inspection will
be “inconclusive”, and a 10% chance of a “looks poorly” result. If the inspected
desk is of low quality then there is a 90% chance of a “looks poorly” result, an
8% chance that the inspection will be “inconclusive”, and a 2% chance of “looks
well” result.

In addition to the inspection station mentioned above, Wood Finishers can add
a second inspection station (which can only inspect a desk which was inspected
at the first station). The result of the inspection at the second station is reported as
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being either “pass” or “fail.” If the desk is of high quality there is a 95% chance
of a “pass.” If the desk is of low quality there is a 97% chance of a “fail.” The
cost of this test would be $60 per desk inspected. For now, let us suppose that we
only need to consider adding the second station if the result of the first test was
“inconclusive”.

9.4.3 Part A
The first paragraph of the problem description contains a decision (rework) and
an event (quality):

Wood Finishers produces a line of executive-type office desks. A
high quality desk nets a profit of $1000. A low quality desk, how-
ever, due to refunds and loss of customer goodwill, has a net loss of
$6000. (High or low quality does not refer to the visible part of the
desk, which is always of high quality, but rather to the ability to last
years of use.) Ninety-six per cent of the production is of high quality.
Adding a rework section to the assembly line would guarantee that
each desk would be of high quality, but this would cost $400 for each
desk reworked.

We can analyze this situation with a payoff matrix or a decision tree. The
rework decision has two alternatives: do not rework; and rework. If the rework is
not done, then there is an event for which there are two possible outcomes: high
quality; and low quality.

We do not know how many desks are being made, so we cannot find the abso-
lute level of profit. Instead, we will work out the profit per desk.

Rework Quality Event
Decision Outcomes
Alternatives High Low EV
Do not Rework 1000 −6000 720
Rework 600 600 600

Prob. 0.96 0.04

Hence, we would choose to not rework, for an expected profit of $720 per
desk. The EV with PI is:

EV with PI = 0.96(1000)+0.04(600)
= 960+24
= 984
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Hence the EVPI is $984 − $720 = $264 per desk.
Although a payoff matrix is perfectly adequate for solving this part of the

problem, it is also possible to use a decision tree. Using a tree now helps when
drawing the tree for Part B (the second paragraph), because the large tree contains
three subtrees which are similar to the one drawn here. Using a tree we obtain:
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If we wish to calculate the EV with PI also using a tree, we have:
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As before, the EVPI is $984 − $720 = $264 per desk.
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9.4.4 Part B
The second paragraph adds an inspection decision and an inspection event:

Suppose that the company can inspect each desk at a cost of $50
(per desk) before deciding whether or not to rework it. The results of
the inspection at this station would be one of the following: “looks
well,” “inconclusive,” or “looks poorly.” If the inspected desk is of
high quality, then there is a 70% chance that the inspection will indi-
cate “looks well,” a 20% chance that the inspection will be “inconclu-
sive”, and a 10% chance of a “looks poorly” result. If the inspected
desk is of low quality then there is a 90% chance of a “looks poorly”
result, an 8% chance that the inspection will be “inconclusive”, and a
2% chance of “looks well” result.

The $50 cost (per desk) of doing the inspection is much less than the EVPI,
which is $264 (per desk). Hence we must proceed with the analysis to see if it
would be worthwhile to do the inspection.

The inspection decision must precede the inspection event, which in turn must
precede the main (rework) decision. After the “no inspection” alternative, we
are left with the situation which was analyzed in Part A. Therefore, we do not
need to redraw this section, but instead merely write the ranking payoff which we
calculated to be $720. For now, we cannot write the probabilities on the inspection
outcomes, as these must be determined using Bayesian revision. This part of the
tree is shown in Figure 9.13.

After every outcome node we have a sub-tree which resembles the tree made
in Part A. Indeed, the only differences are the probabilities, which we need to
calculate using Bayesian revision. The tree for Part B without the probabilities is
shown in Figure 9.14. We then draw the prior and posterior trees for the Bayesian
revision. The completed trees are shown in Figure 9.15. These probabilities are
transferred to the decision tree shown in Figure 9.16. Finally, the tree is rolled
back to obtain a recommendation. The rolled-back tree is shown in Figure 9.17.
Based on this, the recommendation is:

Recommendation Inspect every desk and rework it if and only if a “looks
poorly” result is obtained. The ranking payoff is $869.20 per desk.
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9.4.5 Part C
Solving Parts A and B required knowing only what we saw in the previous section.
However, dealing with the third paragraph requires a bit of thought on how to
begin the prior tree:

In addition to the inspection station mentioned above, Wood Fin-
ishers can add a second inspection station (which can only inspect a
desk which was inspected at the first station). The result of the inspec-
tion at the second station is reported as being either “pass” or “fail.”
If the desk is of high quality there is a 95% chance of a “pass.” If the
desk is of low quality there is a 97% chance of a “fail.” The cost of
this test would be $60 per desk inspected. For now, let us suppose
that we only need to consider adding the second station if the result
of the first test was “inconclusive”.

We will only modify the part of the tree which is affected by this paragraph.
We begin with the “inconclusive” outcome branch. After this we can either do or
not do the second inspection. If we choose the “no 2nd inspection” alternative,
then we are left with the situation which was analyzed in Part B. Therefore, we do
not need to redraw this section, but instead merely write the ranking payoff which
we calculated to be $885.25.

On the other hand, if we choose to do the second test, then we have an alterna-
tive branch with a $60 cost gate, followed by the test event with its two outcomes,
“pass”, and “fail”. For now, we cannot write the probabilities on the inspection
outcomes, as these must be determined using Bayesian revision. This part of the
tree is shown in Figure 9.18. After both outcome nodes we have a sub-tree which
resembles the tree made in Part A. The tree for Part C without the probabilities is
shown in Figure 9.19.

The only tricky thing about the Bayesian revision is the determination of the
beginning probabilities. The prior tree begins with the “high” and “low” qual-
ity outcomes, but the associated probabilities are not the 0.96 and 0.04 that we
had originally. Instead, we must use the probabilities which are conditional on
the first test result being “inconclusive”, because they come after the “incon-
clusive” outcome. Hence we want P(high/inconclusive), which is 0.98361, and
P(low/inconclusive), which is 0.01639.

We then draw the prior and posterior trees for the Bayesian revision. The
completed trees are shown in Figure 9.20. These probabilities are transferred to
the decision tree shown in Figure 9.21. Finally, the tree is rolled back, which
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is shown in Figure 9.22. Because the payoff after the “inconclusive” branch has
increased, the overall recommendation is changed. The increased payoff will cas-
cade through the tree for Part B, increasing the payoff at the outset by:

0.1952(910.52−885.25) = 4.93

Hence the ranking payoff becomes

869.20+4.93 = 874.13

Recommendation Inspect every desk. If a “looks well” result is obtained, then
do not rework it. If an “inconclusive” result is obtained, then do the second in-
spection, and rework it if and only if the result of the second inspection is “fail”.
If the result of the first inspection is “looks poorly”, then rework it. The ranking
payoff is $874.13 per desk.
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9.5 Problems for Student Completion

9.5.1 Newlab
Newlab has come up with a new product in its research lab. The technical success
is clear, but as with any new product the commercial success is risky. Because
of this, they would sometimes test-market a product first, and then make a deci-
sion about national marketing after the test-market results had come in; at other
times they would proceed directly to national marketing. On some occasions, they
would abandon the product without even test-marketing it.

The test-marketing would cost about $120,000. If successful (probability 0.4)
there would be revenues of $40,000; if unsuccessful the revenues would only be
$10,000. Should the test market be successful, a followup national campaign
at a cost of $500,000 would have a 70% chance of success with a revenue of
$1,800,000, otherwise it would be a failure with a revenue of $150,000. Should
the test market be unsuccessful, a followup national campaign would have only a
0.2 chance of success (with the same cost, and the same revenues for success and
failure).

A national campaign not preceded by a test campaign would have a 45%
chance of success. It would cost $600,000, and would produce a revenue of
$1,900,000 if successful, but only $175,000 otherwise.

(a) Draw and solve a decision tree for the situation (using payoff nodes where
appropriate), and state the recommendation for Newlab clearly.

(b) If the $600,000 figure in the last paragraph were changed to $800,000,
what would be the revised recommendation?

9.5.2 Crop Planting
A farmer has been in the habit of always planting potatoes on his farm. In previous
years, the seeds for the potatoes were planted in the spring, and were ready to
harvest in mid-July. After that, a second planting took place in late July, which
was ready to harvest in early October.

This year, however, there is concern that a blight might destroy some or all of
the potato crop. One thing he could do would be to plant a different crop such
as peas which would not be affected by the blight. The peas would have only a
single planting at a cost of $40,000. This planting would yield a crop in October
worth $70,000 if the weather turns out to be good, or $30,000 if the weather turns
out to be poor. There is a 60% chance that the weather will be good.
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If, however, he decides to plant potatoes, he will have to worry about the blight
(but the weather has little effect on the potato crop and can be ignored). The potato
crop would cost $60,000 to plant. There is a 10% chance of a severe blight, which
would destroy the crop, and render any attempt at a second planting in late July not
worth doing. A mild blight (20% chance) would partially destroy the crop, making
it worth only $35,000, while having no blight (70% chance) would produce a crop
worth $80,000. After either a mild blight or no blight, a second planting could
be undertaken, with the same costs and revenues as the first. The probability of a
severe, mild, or no blight would be 15%, 30%, and 55% if the first planting had a
mild blight, but would be 0%, 5%, and 95% if the first planting had no blight.

NOTE: The crop planted in the Spring will be either peas or potatoes; doing
a bit of both is not an option in this problem.

Draw the tree, solve it using the rollback procedure, and state the recommen-
dation and the ranking payoff. When drawing the tree, use payoff nodes for inter-
mediate payoffs.

9.5.3 Promising Construction Jobs
John is a self-employed carpenter. For each job John determines the required time
if things go according to plan, and a longer time in case there need to be unforseen
“extras” (e.g. while replacing clapboard he discovers that insulation is needed).
He is paid $500 per week for each week worked. He knows for sure that he can
start either of the two following jobs this coming Monday.

Job/ Client Time (Weeks) and Probability Must Begin by the
No Extras With Extras Outset of Week

Bathroom – Mrs. Murphy 3 (0.2) 7 (0.8) 5
Kitchen – Mr. Janes 4 (0.7) 6 (0.3) 6

Each potential customer wants John to do one of three things by Monday: (1)
start his/her job, or (2) promise to do his/her job by the required start date, or (3)
say that he cannot do the job (the customer would then find another contractor).

If a customer is told at the outset that his/her job cannot begin by the required
time, then there’s no cost or revenue for that job. If John promises to start a job
by the required time, and (i) the promise is kept, he’s paid for the actual duration
of the job, but (ii) if the promise is not kept, there’s no revenue, and there’s a cost
of $1000 for lost customer goodwill.

Make and solve a decision tree for this situation.
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9.5.4 Consumer Products

A consumer products company has identified a potential product which would
require $1,800,000 in start-up costs to launch. If it turns out to be a major success,
there will be a $10,000,000 contribution to profit. A minor success would give a
profit contribution of $2,000,000, while a failure would have a profit contribution
of only $500,000. The company is most worried about this third possibility, since
in this case the net profit would be $500,000 minus $1,800,000, i.e. a loss of
$1,300,000. In the past, only one new product in twenty became a major success,
while three-quarters of them became failures; there is no reason to suspect that
this product would be any different from the rest.

Some of their competitors use an outside independent market research firm to
give them advice about new products. The fee for the research firm is $50,000; in
return, the consumer products company would be told that the proposed product
either “looks well” or “looks poorly”. The research company had established a
track record which gave them confidence about saying the following:

1. If a product would be a major success, they would say “looks well” with
probability 0.8;

2. If a product would be a minor success, they would say “looks poorly” with
probability 0.7;

3. If a product would be a failure, they would say “looks poorly” with proba-
bility 0.9.

Develop a decision tree and solve it to obtain a recommendation for the con-
sumer products company.

9.5.5 Desk Rework Problem

Now suppose that in the desk rework problem the second inspection could also be
used after a “looks well” or a “looks poorly” outcome from the first test. Deter-
mine if the second inspection would be used in either (or both) of these situations,
and if so restate the recommendation and the revised ranking payoff at the outset
of the tree.
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9.5.6 Oil Exploration
It is known that oil exists beneath the surface at a particular location, but it is not
known if it’s just a small pool of oil (this has a 90% probability), or if there’s a
large pool of oil. A small pool is worth only $500,000, but a large pool would be
worth $12 million. To drill (which will determine the size of the pool) would cost
$2,000,000. If they do not drill, an $80,000 environmental inspection fee will be
refunded to them.

A seismic test is available at a cost of $45,000; the result will be either “posi-
tive” or “negative”. If a large pool of oil is present then there’s an 80% chance of
a positive result; if there’s just a small pool present then there’s a 30% chance of a
positive result. There’s also a second test available called an EKX test. This could
only be used after doing a seismic test and obtaining a positive result, and if used
would cost $40,000. If there’s a large pool of oil the EKX test will report “high”
with probability 0.85; if there’s a small pool the EKX test will report “low” with
probability 0.95.

The company has decided that if they do a seismic test and if it turns out to be
negative, or if after a positive seismic test they do an EKX test and it turns out to
be low, then they will not drill.

Draw and solve a decision tree to determine a recommendation for this situa-
tion. Please use five decimal place accuracy for the Bayesian revisions.

9.6 More Difficult Problems
As these problems might be used for hand-in assignments, solutions are not pro-
vided.

9.6.1 Payoff Matrix with Binomial Demand
Demand for the Telegram at the Avalon News Depot can range anywhere from 31
to 49 papers per day, according to the following binomial probability distribution:

P(K = k) =
18!

k!(18− k)!
0.3k(1−0.3)18−k

where K takes on the values of the number of newspapers demanded in excess of
31, ranging from 0 to 18 inclusive. For example, to find the probability that 36
papers will be ordered we use k = 5 in the formula to obtain 0.201725.
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The Avalon News Depot sells the papers for $1.50 each. Their buying price
depends on the quantity ordered:

Quantity Buying Price
(per day) (per paper)

40 or fewer $1.30
41 to 46 inconclusive $1.17

47 or more $1.03

Papers that are not sold by the end of the day are sold to a recycling firm for 5
cents each.

They wish to know how many papers they should order so that their expected
profit is maximized.

Using the BINOMDIST function to create the probability row, create a spread-
sheet model for this situation, determining the expected profit for each possible
order quantity from 31 to 49 inclusive. Using the ability of Excel to make charts
(also called graphs), plot expected profit as a function of the (integer) quantity
ordered. State the optimal number of papers to order.

9.6.2 Future Shock
Future Shock is a retail chain specializing in electronic equipment. It is currently
having some problems with one of its high volume items. These items are ordered
from the supplier in lots of 100 units and give a profit contribution of $50 per
unit. Past experience indicates that the possible percentage defective in a lot are
10%, 20% and 30% with probabilities of 0.5, 0.3 and 0.2 respectively. Future
Shock could non-destructively test some or all of the units. A maximum of three
units could be tested sequentially (i.e. test one and see whether its defective or not
defective, then test another, and so on); however, at any time they may choose to
simultaneously test all remaining units. (For example, after testing two units, they
could choose to do no more testing, or test the third unit, or test all remaining 98
units.) No matter how the testing is done, the testing costs $20 per unit tested. If
Future Shock inspects a unit and finds it to be defective, then it will be replaced by
the supplier at no cost. The replacement unit will be known to be non-defective.
However, when a defective unit is sent to a customer, it is replaced by Future
Shock at a cost of $100. Determine your recommendation for Future Shock, doing
all calculations on a spreadsheet.
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Appendix A

Software for Optimization

As an alternative to using a spreadsheet solver, one can use software which has
been created specifically for linear/integer/nonlinear programming. First we look
at LINGO, and then briefly discuss other programs.

A.1 LINGO

A.1.1 How to Obtain It

LINGO is a registered trademark of LINDO Systems Inc. The company’s first
product was named LINDO, and that name has been retained in the name of the
company. Though LINDO is still available, development on this software ended
in 2003, and no version was ever created for the Apple Macintosh. By contrast,
version 18 of the much more advanced LINGO was released in 2018, and variants
exist for Windows, Mac, and Linux.

The website for LINDO Systems Inc. is at https://www.lindo.com/. To ob-
tain LINGO, go to the website, then click on “Downloads”, then scroll down and
click on “Download LINGO”. A page will appear with many versions of LINGO;
choose one to download, and then open the zip file.

The software can be operated in “Demo Version” mode with restrictions on
problem size. As a student, working on non-commercial research, it may be pos-
sible to obtain an access code for an unlimited version, provided by the generosity
of LINDO Systems Inc.

A complete list of the features on LINGO can be obtained by downloading
the very extensive LINGO User’s Manual from https://lindo.com/index.php/ls-
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downloads/user-manuals. A few features to help the user get started are described
below.

A.1.2 Introduction to Solving Linear Models
LINGO has two ways of being used. One way, which is suitable for smaller
models and is more easily understood by beginners, inputs each line in a manner
which is similar to the algebraic model. We will illustrate this simpler approach
using four examples. There is also a more complicated approach which is suitable
for larger models, which uses sets to separate the data from the variables. This
approach is beyond the scope of this book.

We are not required to enter the variable definitions, because they are not
needed to solve the problem mathematically. However, we may wish to enter them
as comments in order to make things easier to understand. A comment is made
by first typing an exclamation mark; a comment is ended by typing a semicolon.
Anything from the exclamation mark to the semicolon inclusive is ignored by
LINGO. Comments could also be made to give the name of the model, the name
of the person who made it, the date of its creation, the purpose of the constraints,
or anything else that might make the file easier to understand when viewing it at
a later point in time. Also, blank lines may be inserted at will to help improve the
appearance of the file.

We do not enter the non-negativity restrictions, because they are always as-
sumed to be present. Some adjustments have to be made because of the limitations
of the keyboard. We cannot enter a subscripted variable, hence X1 and X2 are en-
tered as X1 and X2. Also, since there are no ≤ or ≥ symbols on the keyboard, we
enter <= and >= instead. To give the purpose of a constraint or set of constraints,
we input a comment line.

Comments in LINGO will appear in green, commands are in blue, and every-
thing else is in black. There is a great deal of similarity with the original algebraic
model, but here are some important exceptions:

1. The objective function, and each constraint, ends with a semicolon.

2. The word “maximize” is invoked with “MAX =”; and we use “MIN =” for
minimization. LINGO will write MAX or MIN in blue.

3. Multiplication requires an asterisk. Hence “4X1” is entered as “4∗X1”.

4. The words “subject to” are not entered.

https://lindo.com/index.php/ls-downloads/user-manuals
https://lindo.com/index.php/ls-downloads/user-manuals
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5. The non-negativity restrictions are assumed; they are not entered by the
user.

6. We finish with the command “END” (which LINGO will write in blue).

After doing the above for any model we:

1. Save the model by clicking on File, and under this clicking in either Save
or Save As.... The default extension is lg4.

2. Click on Solver, and then under this click on Solve. The Solution Report
will open in a second window.

A.1.3 Solving the Cement Plant Problem

Converting the Cement Algebraic Model to LINGO Syntax

To illustrate the use of LINGO for a linear optimization model, we will use the
algebraic model of the cement problem, which appears on page 44, and is repeated
here.

X1 = the number of TPD of Type 1 cement made
X2 = the number of TPD of Type 2 cement made

maximize 8X1 + 10X2

subject to

Type 1 Sales X1 ≥ 40
Type 2 Sales X2 ≥ 30

Total Production X1 + X2 ≤ 200
Dept. A Labour 3X1 + 2X2 ≤ 585
Dept. B Labour 1.5X1 + 5X2 ≤ 500
Dept. C Labour 4X1 + 6X2 ≤ 900

non-negativity X1 , X2 ≥ 0

This is entered into LINGO (the colours are made by LINGO) as:
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! Cement Plant Model              

X1 = the number of TPD of Type 1 cement made 

X2 = the number of TPD of Type 2 cement made; 

MAX = 8 * X1 + 10 * X2; 

! Sales;  

X1 >= 40; 

X2 >= 30; 

! Total Production;  

X1 + X2 <= 200; 

! Labour in Departments A, B, and C; 

3 * X1 + 2 * X2 <= 585; 

1.5 * X1 + 5 * X2 <= 500; 

4 * X1 + 6 * X2 <= 900; 

END 

 

 

This model can be saved by clicking on File, and under this clicking in either
Save or Save As.... The default extension is lg4. Hence if the prefix is cement, the
file name will be cement.lg4.

Now click on Solver, and then under this click on Solve. The following report
is obtained:
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Global optimal solution found. 

  Objective value:                              1700.000 

  Infeasibilities:                              0.000000 

  Total solver iterations:                             4 

  Elapsed runtime seconds:                          0.05 

 

  Model Class:                                        LP 

 

  Total variables:                      2 

  Nonlinear variables:                  0 

  Integer variables:                    0 

 

  Total constraints:                    7 

  Nonlinear constraints:                0 

 

  Total nonzeros:                      12 

  Nonlinear nonzeros:                   0 

 

 

 

                                Variable           Value        Reduced Cost 

                                      X1        150.0000            0.000000 

                                      X2        50.00000            0.000000 

 

                                     Row    Slack or Surplus      Dual Price 

                                       1        1700.000            1.000000 

                                       2        110.0000            0.000000 

                                       3        20.00000            0.000000 

                                       4        0.000000            4.000000 

                                       5        35.00000            0.000000 

                                       6        25.00000            0.000000 

                                       7        0.000000            1.000000 

 

 

We see the objective function value of 1700 on the second line. The next
several lines give us a measure of how much work the computer did to find the
optimal solution – this is of technical rather than managerial interest, and we shall
not use this information.

Then we see that the values of the variables are X1 = 150 and X2 = 50. It is
up to the user of the software to translate this into the words needed to express a
recommendation.

Note that LINGO labels the objective function as row 1, the first constraint as
row 2, and so on, with the sixth constraint being row 7.

Sensitivity Analysis

The subject of sensitivity analysis is covered in Chapter 4. The term Slack or
Surplus is explained in Chapter 2 and then again in Chapter 4. The terms Reduced
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Cost and Dual Prices (see the footnote on page 168) are explained in Chapter 4.
Further use of sensitivity analysis requires the allowable ranges. To obtain these
using LINGO we need to do the following:

(a) Under Solver, click on Options.

(b) Near the top of the dialog box, click on the General Solver tab.

(c) Find the Dual Computations box, and set it to Prices and Ranges.

(d) To make this change permanent, at the bottom click on Apply and then Save.

Now run the model by clicking on Solver and then Solve, which creates the
Solution Report. Then, close the Solution Report window and click on Solver and
under this click on Range. Now, the Range Report will open. Here is the Range
Report for the Cement problem:

 Ranges in which the basis is unchanged:

                                       Objective Coefficient Ranges:

                                        Current        Allowable        Allowable
                      Variable      Coefficient         Increase         Decrease
                            X1         8.000000         2.000000         1.333333
                            X2         10.00000         2.000000         2.000000

                                           Righthand Side Ranges:

                                        Current        Allowable        Allowable
                           Row              RHS         Increase         Decrease
                             2         40.00000         110.0000         INFINITY
                             3         30.00000         20.00000         INFINITY
                             4         200.0000         7.000000         4.545455
                             5         585.0000         INFINITY         35.00000
                             6         500.0000         INFINITY         25.00000
                             7         900.0000         14.28571         40.00000

Now we present some more examples of models put into LINGO syntax.
They include a minimization model, a larger maximization model with double-
subscription variables, and a model with integer variables.
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A.1.4 The Diet Model in LINGO Syntax
The algebraic model of the diet problem seen in Chapter 2 appears on page 64,
and is repeated here.

X1 = the number of double hamburgers eaten each day
X2 = the number of servings of orange juice drunk each day

minimize 1.25X1 + 0.32X2

subject to

Protein RDI 31.820X1 + 1.469X2 ≥ 46
Iron RDI 5.547X1 + 1.096X2 ≥ 15

Vitamin C RDI 1.075X1 + 85.656X2 ≥ 60
Iron Proportion 0.5547X1 − 0.9864X2 ≤ 0

non-negativity X1 , X2 ≥ 0

! Diet Model 
X1 = the number of double hamburgers eaten each day 

X2 = the number of servings of orange juice drunk each day; 
MIN = 1.25 * X1 + 0.32 * X2; 

! RDI for Protein, Iron, and Vitamin C;  
31.820 * X1 + 1.469 * X2 >=  46; 
5.547 * X1 + 1.096 * X2 >= 15; 

1.075 * X1+ 85.656 * X2 >= 60; 
! Iron Proportion;  

0.5547 * X1 - 0.9864 * X2 <= 0;  
END 

 

A.1.5 The Gasoline Blending Model in LINGO Syntax
The model for the gasoline blending problem appears on page 93, and is repeated
here.

X1 = amount (in m3) of output gasoline #1 sold,
X2 = amount (in m3) of output gasoline #2 sold,
I1 = amount (in m3) of input gasoline #1 purchased,
I2 = amount (in m3) of input gasoline #2 purchased,
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U1,1 = amount (in m3) of input 1 used to make output 1,

U1,2 = amount (in m3) of input 1 used to make output 2,

U2,1 = amount (in m3) of input 2 used to make output 1,

U2,2 = amount (in m3) of input 2 used to make output 2.

maximize 310X1 +230X2−265I1−188I2
subject to

Available, Input 1 I1 ≤ 25000
Available, Input 2 I2 ≤ 60000

Minimum production, Output 1 X1 ≥ 15000
Minimum production, Output 2 X2 ≥ 30000

Balance, Input 1 −I1 +U1,1 +U1,2 = 0
Balance, Input 2 −I2 +U2,1 +U2,2 = 0

Balance, Output 1 −X1 +U1,1 +U2,1 = 0
Balance, Output 2 −X2 +U1,2 +U2,2 = 0

Octane Rating, Output 1 −95X1 +110U1,1 +80U2,1 ≥ 0
Octane Rating, Output 2 −85X2 +110U1,2 +80U2,2 ≥ 0

Vapour Pressure, Output 1 −40X1 +35U1,1 +65U2,1 ≤ 0
Vapour Pressure, Output 2 −55X2 +35U1,2 +65U2,2 ≤ 0

all variables must be ≥ 0

In LINGO, variable names cannot contain commas. In this small example
we can simply omit the commas in the U variables. Hence, for example, U1,2 is
entered as U12.1 Hence the model is entered into LINGO as:

1In a more complicated model, with variables X3,27 and X32,7 we could not simply eliminate the
commas because this would make both variables X327. However, we could change each comma
to say a C, making the variables in LINGO X3C27 and X32C7.
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! Gasoline Blending Model 

All quantities are in cubic metres. 

X1 = amount of output gasoline #1 sold, 

X2 = amount of output gasoline #2 sold, 

I1 = amount of input gasoline #1 purchased, 

I2 = amount of input gasoline #2 purchased, 

U11 = amount of input 1 used to make output 1, 

U12 = amount of input 1 used to make output 2, 

U21 = amount of input 2 used to make output 1, 

U22 = amount of input 2 used to make output 2; 

MAX = 310 * X1 + 230 * X2 - 265 * I1 - 188 * I2; 

! Inputs; 

I1 <= 25000; 

I2 <=  60000; 

! Outputs;  

X1 >= 15000; 

X2 >= 30000; 

! Balances; 

- I1 + U11 + U12 = 0; 

- I2 + U21 + U22 = 0; 

- X1 + U11 + U21 = 0; 

- X2 + U12 + U22 = 0; 

! Octane Rating;  

- 95 * X1 + 110 * U11 + 80 * U21 >= 0; 

- 85 * X2 + 110 * U12 + 80 * U22 >= 0; 

! Vapour Pressure;  

- 40 * X1 + 35 * U11 + 65 * U21 <= 0; 

- 55 * X2 + 35 * U12 + 65 * U22 <= 0; 

END 

 
 

A.1.6 The Cargo Plane Model in LINGO Syntax
Recall that Cargo Plane Model, first seen as a spreadsheet model in Chapter 1, and
then formulated as an algebraic model in Chapter 6 on page 242, is as follows:

X1 = the number of Type 1 boxes carried on the plane
X2 = the number of Type 2 boxes carried on the plane
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One of:
(i) maximize 400X1 + 400X2

(ii) maximize 600X1 + 250X2
(iii) maximize 300X1 + 750X2

subject to

Volume 2.9X1 + 1.8X2 ≤ 15
Mass 470X1 + 530X2 ≤ 3600

Type 1 X1 ≤ 6
Type 2 X2 ≤ 8

non-negativity X1 , X2 ≥ 0
integer X1 , X2

We need to give some functions needed for defining integer variables:

0/1 Integer Variables When a variable has to be either 0 or 1, we use the @BIN
function to make this declaration. This command could be placed anywhere; it
could go before the MAX command, or it could be placed just before the END
command. If say variable Y3 has to be either 0 or 1, then somewhere we would
write:

@BIN(Y3);

General Integer Variables When a variable has to be a positive integer, we use
the @GIN function to make this declaration. If say variable X5 has to be integer,
then somewhere we would write:

@GIN(X5);

For this example, we need to define two general integer variables. Using ver-
sion (i) of the objective function the model in LINGO’s syntax this is:
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! Cargo Plane Model  
X1 = the number of Type 1 boxes carried on the plane 
X2 = the number of Type 2 boxes carried on the plane; 
MAX =  400 * X1 + 400 * X2; 
! Volume; 
2.9 * X1 + 1.8 * X2 <= 15; 
! Mass; 
470 * X1 + 530 * X2 <= 3600; 
! Type 1; 
X1 <= 6; 
! Type 2;  
X2 <= 8; 
@GIN(X1); 
@GIN(X2); 
END 

A.2 Other Software
Many companies make software for linear programming. Of these, most offer
either a no-cost or at least a cheap version for students. There is also some open-
source software. Here is some of what is available:

1. GLPK is open-source software. See http://www.gnu.org/software/glpk/.

2. COIN-OR is open-source software. See https://www.coin-or.org/. It is an
umbrella for many projects, such as CMPL at http://www.coliop.org/.

3. CPLEX, an IBM product, can handle very large-scale examples. IBM makes
the program free in two versions. Firstly, there is a “Community Edition”,
which can handle up to 1000 variables and 1000 constraints; this version
may be downloaded by anyone from https://www.ibm.com/account/reg/us-
en/signup?formid=urx-20028. Secondly, as part of their “Academic Initia-
tive”, an unrestricted version is available for academic non-commercial use.
More information is available at
https://ibm.onthehub.com/WebStore/ProductSearchOfferingList.aspx?srch=ilog+cplex.

4. Gurobi has a website for users at universities at
http://www.gurobi.com/academia/for-universities.

http://www.gnu.org/software/glpk/
https://www.coin-or.org/
http://www.coliop.org/
https://www.ibm.com/account/reg/us-en/signup?formid=urx-20028
https://www.ibm.com/account/reg/us-en/signup?formid=urx-20028
https://ibm.onthehub.com/WebStore/ProductSearchOfferingList.aspx?srch=ilog+cplex
http://www.gurobi.com/academia/for-universities
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5. AMPL is not itself a solver for linear optimization, but instead is a modeling
system for large-scale applications. AMPL can be linked to a wide variety
of solvers, such as CPLEX and Gurobi. See https://ampl.com/.

https://ampl.com/


Appendix B

Dedicated Network Algorithms

Here we describe two purpose-built algorithms, on for the maximal flow problem,
and the other for the shortest path problem.

B.1 Maximal Flow Algorithm
Here we describe a purpose-built algorithm for solving the maximal flow problem.
To discuss this problem properly, we need to define three terms: cut, cut capacity,
and minimal cut capacity.

B.1.1 Definition of Terms
A cut partitions the nodes into two connected groups of nodes, with the source
in one group, and the sink in the other. These groups can be formed by drawing
a line through the network which “cuts” the network. The cut consists of each
arc which directly connects the nodes in the source group with those in the sink
group. Two examples are:

Source Group Sink Group Cut Arcs
(a) 1 , 3 2 , 4 , 5 , 6 (1,2), (3,2), and (3,5)
(b) 1 , 2 , 4 3 , 5 , 6 (1,3), (2,3), (4,5), and (4,6)

The cut which forms the two groups in (a) is illustrated in Figure B.1. While
the cut does not have to be represented by a straight line, as it is here, the cut
cannot loop back across the network. For example, two groups such as 1 , 2 , 5
and 3 , 4 , 6 would not be formed from a cut.

471
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Figure B.1: A cut through arcs (1,2), (3,2), and (3,5)

The cut capacity is the sum of the capacities (in the source to sink direction)
of all the arcs which cross the “cut.”

For the previous examples we obtain:

Cut Arcs Cut Capacity
(a) (1,2), (3,2), (3,5) 13 + 4 + 8 = 25
(b) (1,3), (2,3), (4,5), (4,6) 8 + 9 + 8 + 8 = 33

For a small problem such as this one, we can enumerate all of the cuts and
their associated capacities as follows:

Cut # Source Group Sink Group Cut Arcs Cut Capacity
1 1 2, 3, 4, 5, 6 (1,2), (1,3) 13 + 8 = 21
2 1, 3 2, 4, 5, 6 (1,2), (3,2), (3,5) 13 + 4 + 8 = 25
3 1, 3, 5 2, 4, 6 (1,2), (3,2), (5,4), (5,6) 13 + 4 + 4 + 14 = 35
4 1, 2 3, 4, 5, 6 (1,3), (2,3), (2,4) 8 + 9 + 10 = 27
5 1, 2, 3 4, 5, 6 (2,4), (3,5) 10 + 8 = 18
6 1, 2, 3, 5 4, 6 (2,4), (5,4), (5,6) 10 + 4 + 14 = 28
7 1, 2, 4 3, 5, 6 (1,3), (2,3), (4,5), (4,6) 8 + 9 + 8 + 8 = 33
8 1, 2, 3, 4 5, 6 (3,5), (4,5), (4,6) 8 + 8 + 8 = 24
9 1, 2, 3, 4, 5 6 (4,6), (5,6) 8 + 14 = 22

The minimal cut capacity of a network with a given source and sink is the
smallest cut capacity which is obtained when every possible cut has been exam-
ined. In this example, the minimal cut capacity is 18 (cut # 5).

There is a theorem called the Max Flow/Min Cut Theorem which states that the
maximal flow from source to sink is equal to the minimal cut capacity. Thus, the
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maximal flow from 1 to 6 in this example is 18. If either the source or the sink
were to change, we would have a different set of cuts, and would have to calculate
the cut capacities from scratch. We could use this theorem to find the maximal
flow between any pair of nodes, however, the max flow/min cut theorem is rarely
used on its own at the outset. Instead, there is an efficient algorithm for this
problem, which finds not only the value of the maximal flow, but also determines
the flow on each arc from source to sink. The use of the theorem comes at the end
of the algorithm, when it is used merely to prove that the solution is optimal.

The algorithm begins with no flow from source to sink. At each iteration the
flow from source to sink is augmented, and the arc capacities are adjusted. When
no further augmentation to the flow is possible, the algorithm stops.

B.1.2 Maximal Flow Problem Algorithm
Step 0: Flow = 0

Step 1: Find any path from the source to the sink for which all the forward
arc capacities are strictly positive (i.e. > 0). If no such path exists,
then the optimal solution has been found, with the maximal flow being
the current value of “Flow.”

Step 2: Let Cmin be the smallest capacity on the path found in Step 1. In-
crease the flow from the source to the sink by sending (an additional)
Cmin units of flow over this path.

Flow← Flow + Cmin.1

Step 3: Adjust for the increase in flow as follows:

(i) decrease all arc capacities along this path in the forward (i.e. source
to sink) direction by Cmin.

(ii) increase all arc capacities along this path in the backward (i.e. sink to
source) direction by Cmin.2

Return to Step 1.
1The← symbol means “takes on the value of.” An “=” sign would be inappropriate.
2This must be done in case we later wish to reverse the flow on any of these arcs. Before there

can be any flow in the opposite direction, we must cancel the current forward flow. The amount of
flow which could theoretically exist in the reverse direction relative to the current forward flow is
the initial reverse direction capacity plus the current forward flow.
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Figure B.2:

B.2 Solution for the Maximal Flow Example
The data comes from the example shown on page 221. In the solution which
follows the diagram is re-drawn at each iteration for the sake of clarity. In practice,
one diagram would be made with the superseded arc capacities overstriked.

Step 0
Flow = 0

Iteration 1
Step 1
Arbitrarily pick path 1 → 2 → 4 → 6 .
Step 2

Cmin = min{13,10,8}
= 8

Flow ← Flow+Cmin

= 0+8
= 8

Step 3
The new capacities for the arcs which have been affected are given in Figure

B.2.

Iteration 2
Step 1
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Arbitrarily pick path 1 → 3 → 5 → 6 .
Step 2

Cmin = min{8,8,14}
= 8

Flow ← Flow+Cmin

= 8+8
= 16

Step 3
The new capacities are indicated in Figure B.3

Iteration 3
Step 1
Arbitrarily pick path 1 → 2 → 4 → 5 → 6 .
Step 2
Using the capacities which have been updated in the previous iterations, we

have:

Cmin = min{5,2,8,6}
= 2

Flow ← Flow+Cmin

= 16+2
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Figure B.4: Flows and Adjusted Arc Capacities

= 18

Step 3
The new capacities are given in Figure B.4. Each arc flow and its direction is

given in boldface on the diagram.

Iteration 4
Step 1
No flow augmenting path can be found, hence the current value of the flow,

which is 18, is the maximal flow from 1 to 6 .

We can see that there is no path with strictly positive capacity, by finding a
cut for which the adjusted arc capacities are zero. In this example (see the dashed
line on Figure B.4), the capacity of the cut consisting of arcs (2,4) and (3,5) is
0+0 = 0. From the max flow/min cut theorem, the maximum amount that can be
carried relative to these arc capacities is 0. Hence, the current flow of 18 must be
the maximal flow from 1 to 6 .

B.2.1 Second Maximal Flow Example

Now suppose that we wish to know the maximal flow from 6 to 1 . The original
arc capacities are as shown in Figure B.5.

Step 0
Flow = 0

Iteration 1
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Figure B.5: Second Maximal Flow Example – Arc Capacities

Step 1
Arbitrarily3 pick path 6 → 4 → 5 → 3 → 1 .
Step 2

Cmin = min{9,8,6,5}
= 5

Flow ← Flow+Cmin

= 0+5
= 5

Step 3
Subtracting 5 units from the forward direction of this path, and adding 5 units

in the reverse direction we obtain Figure B.6.

Iteration 2
Step 1
Arbitrarily pick path 6 → 4 → 2 → 1 .
Step 2

Cmin = min{4,13,15}
3In solving this problem we will deliberately choose a path at the outset which has an arc for

which the flow will later be reversed. This is done so that the procedure for reversing the flow can
be illustrated.
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Figure B.6: Five Units of Flow from 6 to 1
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Figure B.7: Nine Units of Flow from 6 to 1

= 4
Flow ← Flow+Cmin

= 5+4
= 9

Step 3
Subtracting 4 units from the forward direction of this path, and adding 4 units

in the reverse direction we obtain Figure B.7.

Iteration 3
Step 1
Arbitrarily pick path 6 → 5 → 3 → 2 → 1 .
Step 2
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Figure B.8: Ten Units of Flow from 6 to 1

Cmin = min{12,1,4,11}
= 1

Flow ← Flow+Cmin

= 9+1
= 10

Step 3
Subtracting 1 unit from the forward direction of this path, and adding 1 unit in

the reverse direction we obtain Figure B.8.

Iteration 4
Step 1
Arbitrarily pick path 6 → 5 → 4 → 2 → 1 .
Step 2

Cmin = min{11,9,9,10}
= 9

Flow ← Flow+Cmin

= 10+9
= 19

Step 3
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Figure B.9: Nineteen Units of Flow from 6 to 1

Subtracting 9 units from the forward direction of this path, and adding 9 units
in the reverse direction we obtain Figure B.9.

Iteration 5
Step 1
No remaining paths with forward direction capacity.
Therefore, maximal flow = 19 units.
Note that at iteration 4 the flow was reversed, with 9 units being sent from 6

to 1 via 5 , 4 , and 2 . Had we not increased the reverse capacity from 4 units
to 9 units at iteration 1, the reversion at iteration 4 would not have been possible.

B.2.2 Limiting Cuts
There are two cuts which limit the flow to 19 units in this example. They are:

Cut Arcs Cut Capacity
(a) (4,2), (5,3) 13 + 6 = 19
(b) (5,3), (5,4), (6,4) 6 + 4 + 9 = 19

B.3 Shortest Path Algorithm
As an alternative to solving a shortest path problem by formulating and then solv-
ing it as a linear optimization problem, we can create a dedicated procedure for
this problem called the “Shortest Path4 Algorithm.” This algorithm is based on

4Also called the “shortest route algorithm.”
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a labelling procedure. Each node is labelled in the form (x,y), where x is the
distance of the shortest path found so far from the starting point to the node of
interest, and y is the number of the predecessor node (i.e. the immediately pre-
vious node) on that path. The label is permanent if x is known to be the shortest
distance, otherwise the label is temporary and may subsequently be updated.

Step 1: At the outset, the starting node is permanent; the rest are non-
permanent.

Step 2: For the most recently permanently labelled node, which we call
node y, determine all of the non-permanent nodes which can be reached
directly from node y.

Step 3: Assign a temporary label in the form (x,y) to each of these reach-
able nodes using the permanently labelled node as the predecessor
(y), and where x is the distance from the starting node to node y plus
the distance from node y to the reachable node.

Step 4: For each of the temporarily labelled nodes, keep only the temporary
label which has the minimum value of x.

Step 5: Amongst all of the temporarily labelled nodes find the smallest dis-
tance x in the corresponding label and designate this node and this
label as permanent.5

Step 6: If the destination node has been permanently labelled, then STOP.
Otherwise, return to Step 2.

B.3.1 Solution for the Shortest Path Example

Applying this algorithm to the network described on page 226, the off-the-diagram
variation proceeds as follows:

Iteration 1:
Designate the starting node as permanently labelled.

5When there is a tie among two or more nodes for the smallest x, then both (or all) tied nodes
would become permanently labelled. Steps 2 and 3 would then involve more than one y-type node.
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Permanently Temporarily Temporary
Labelled Labelled Label
Node(s) Node(s)

1 2 (40,1)
1 3 (58,1)
1 4 (30,1)*

The symbol * is used to designate the label which became permanent. At this
point we know that the shortest distance to node 4 is 30. In addition, to arrive at
any other temporarily labelled node we must travel a distance greater than 30.

Iteration 2:
Node 4 has a permanent label so we need to assign temporary labels to all the

nodes which can be reached from node 4.

Permanently Temporarily Temporary Minimum
Labelled Labelled Label Label
Node(s) Node(s)

1 2 (40,1) (40,1)*
1 3 (58,1) —
4 3 (46,4) (46,4)
4 6 (50,4) (50,4)

Note that we always use the cumulative distance. Thus for going from 4 to 3
we use 30 + 16 = 46 and from 4 to 6 we use 30 + 20 = 50.

Iteration 3:
Node 2 has a permanent label so we need to assign temporary labels to all the

nodes which can be reached from node 2.

Permanently Temporarily Temporary Minimum
Labelled Labelled Label Label
Node(s) Node(s)

4 3 (46,4) (46,4)*
4 6 (50,4) (50,4)
2 3 (52,2) —
2 5 (110,2) (110,2)

Iteration 4:
Node 3 has a permanent label so we need to assign temporary labels to all the

nodes which can be reached from node 3.
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Permanently Temporarily Temporary Minimum
Labelled Labelled Label Label
Node(s) Node(s)

4 6 (50,4) (50,4)*
2 5 (110,2) —
3 5 (101,3) (101,3)
3 6 (71,3) —-
3 7 (111,3) (111,3)

Iteration 5:
Node 6 has a permanent label so we need to assign temporary labels to all the

nodes which can be reached from node 6.

Permanently Temporarily Temporary Minimum
Labelled Labelled Label Label
Node(s) Node(s)

3 5 (101,3) (101,3)
3 7 (111,3) —
6 7 (85,6) (85,6)*

Since 7 is permanently labelled at this iteration, we have the solution to the
original problem. The shortest distance from 1 to 7 is a distance of 85 units,
and the path can be “traced back” using the y’s.

The shortest path from 1 to 7 lies through 6 .
The shortest path from 1 to 6 lies through 4 .
Therefore the shortest path is 1 → 4 → 6 → 7 with a distance of 85 units.

If we wish to find the shortest path from 1 to all other nodes, we need only to
continue the iterations until all nodes have become permanently labelled.

Iteration 6:
Node 7 has a permanent label so we need to assign temporary labels to all the

nodes which can be reached from node 7.

Permanently Temporarily Temporary Minimum
Labelled Labelled Label Label
Node(s) Node(s)

3 5 (101,3) —
7 5 (100,7) (100,7)*
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Figure B.10: Solution Performed on the Network

Thus the shortest paths from 1 to all other nodes are:

From 1 to Distance Path
2 40 1→ 2
3 46 1→ 4→ 3
4 30 1→ 4
5 100 1→ 4→ 6→ 7→ 5
6 50 1→ 4→ 6
7 85 1→ 4→ 6→ 7

This solution can be determined right on the network. In this visual varia-
tion of the shortest path algorithm, the labels are crossed out as they become su-
perceded 6 (i.e. as x and y change). The labels are marked with an asterisk when
the status changes from temporary to permanent. The starting node is labelled
with an “S”.

6We have indicated this by drawing a horizontal line through the label.



Appendix C

Integer Extensions

Here we present two more advanced integer models, and the branch-and-bound
method for solving integer models.

C.1 Advanced Models

C.1.1 A Capacity Planning Problem
Description

An electrical utility has five projects available. Some or all of these projects will
be built over a ten year planning horizon. The utility can choose which projects
it wishes to undertake, and the year in which each undertaken project commences
to produce electricity. However, because of construction time, the earliest that
project i can commence producing electricity is in year pi, where 1≤ pi ≤ 10 (for
example, if p3 = 6, then the utility can choose project 3 to commence in year 6
or in any subsequent year). If undertaken, the ith project will incur a capital cost
of ci dollars in the year in which the project commences, and will contribute a
capacity of ei units of electrical energy per annum. (There is no cost beyond the
commencement year of each project, but it continues to produce electricity at the
same rate in each subsequent year). The utility has a capital budget of bt dollars in
year t, where 1≤ t ≤ 10. Any unspent capital funds are accumulated from year to
year. (Hence, for example, in year 5 the company may spend any leftover money
at the end of year 4 plus b5.) There is a current year (year 0) surplus of 40 units of
energy (i.e. the current capacity is 40 units greater than the demand). The increase
in demand from year t− 1 to year t will be dt units of energy. In each year, the

485
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capacity cannot be less than the demand.
Ignoring the time value of money, we wish to formulate a model which will

minimize the surplus of generating capacity in the tenth year.
Note: the p’s, c’s, e’s, b’s and d’s are parameters, not variables.

Formulation

The problem has two entities which resemble inventories, at least as far as the
modelling is concerned. First, there are the unspent capital funds at the end of
each year. Since these are unknown, we define:

Ut = amount of unspent funds at the end of year t, t = 0, . . . ,10

Secondly, there is the surplus of generating capacity at the end of each year. Be-
cause the surpluses are unknown, we represent them using variables. These vari-
ables will have a non-negativity restriction, which is precisely what we want since
the “capacity cannot be less than the demand.” Hence we define:

St = amount of surplus capacity at the end of year t, t = 0, . . . ,10

We must decide if and when each project commences, for which we define:

Yit =

{
1 if project i commences in year t
0 otherwise

}
i = 1,2,3,4,5
t = pi, . . . ,10

Note that Yit is only defined for those situations were it could take on the value of
1. (If t < pi, then the project is definitely not built in that year.)

The objective, which is to minimize the ending surplus of generating capacity,
is simply

minimize S10

The initial level of capital funds is U0 = 0. In year t, the amount of capital which
can be invested is the initial level of capital funds, which is Ut−1, plus that year’s
capital allocation, which is bt . The capital cost of project i in year t is ciYit . The
total capital spent in year t is found by summing over all projects. This sum is

∑
all i such
that pi≤t

ciYit

To avoid clutter, we will shorten this to

∑
i

ciYit
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The amount of leftover capital at the end of year t is Ut . Balancing these four
amounts we obtain

Ut−1 +bt = ∑
i

ciYit +Ut

Re-arranging so that the variables are on the left and the parameter is on the right
we obtain, for t = 1, . . . ,10,

−Ut−1 +∑
i

ciYit +Ut = bt

The initial surplus of generating capacity is given as S0 = 40. In each year t,
the surplus at the outset of the year, plus the newly installed capacity during that
year, must equal the increase in demand during that year plus the ending surplus.
The surplus at the outset of year t is St−1. The capacity installed during year t is

∑
all i such
that pi≤t

eiYit

Again, to avoid clutter, we will shorten this to

∑
i

eiYit

The increase in demand during the year is dt , and the capacity surplus at the end
of year t is St . Hence

St−1 +∑
i

eiYit−St = dt t = 1, . . . ,10

Note that the absolute level of demand does not need to be tracked.
Each project can only be built once, hence

10

∑
t=pi

Yit = 1 i = 1, . . . ,5

Finally, we require that each Ut and each St be non-negative (t = 0, . . . ,10), and
each Yit ∈ {0,1} for i = 1,2,3,4,5 and t = pi, . . . ,10. Putting all this together we
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obtain:

minimize S10
subject to

(1) U0 = 0
(2), . . . ,(11) −Ut−1 +∑

i
ciYit +Ut = bt (t = 1, . . . ,10)

(12) S0 = 40
(13), . . . ,(22) St−1 +∑

i
eiYit−St = dt (t = 1, . . . ,10)

(23), . . . ,(27)
10

∑
t=pi

Yit ≤ 1 (i = 1, . . . ,5)

Ut ,St ≥ 0 (t = 0, . . . ,10)

Yit ∈ {0,1}
{

i = 1, . . . ,5
t = pi, . . . ,10

}

C.1.2 A Journey by Rail

Description

A railway buff wishes to travel eastbound from the Atlantic Ocean to the Pacific
Ocean. He will begin at Lisbon, Portugal (station 1) and finish at Vladivostok,
Russia (station 20) via a pre-determined route. Over a 30 day month, a schedule
has been published by the railway companies indicating which stations have day-
time connecting services on which days. Parameter si jt is 1 if there is a service
which goes from station i to station j ( j > i) on day t, and is 0 otherwise. He will
only travel on one service per day, will always travel eastbound, and will never
travel at night. He wishes to complete the journey within 30 days. He need not
travel every day.

Formulation

We see that from reading the problem there is a binary choice associated with
each service. Since parameter s has triple subscription, we will let the associated
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decision variable have triple subscription. We define1

Yi jt =


1 if he travels from station i

to station j on day t
0 otherwise


i = 1, . . . ,19
j = i+1, . . . ,20
t = 1, . . . ,30

The objective is to minimize the day of arrival at Vladivostok ( j = 20). What
we want is the value of t for which Yi20t = 1. (The context requires that each other
Yi20t be 0.) Since each Yi20t is either 0 or 1, the product tYi20t is either 0 or t. Hence

Day of Arrival at Vladivostok =
19

∑
i=1

30

∑
t=1

tYi20t

which is precisely what we wish to minimize. The objective function is therefore:

minimize
19

∑
i=1

30

∑
t=1

tYi20t

We now examine the constraints. Since he cannot travel on a service if it does
not exist, an obvious set of constraints is that Yi jt must be 0 if si jt is 0. (If si jt = 1,
then Yi jt can be either 0 or 1.) Hence

Yi jt ≤ si jt i = 1, . . . ,19 j = i+1, . . . ,20 t = 1, . . . ,30

While this is correct, we have created (19+18+ · · ·+2+1)30= 5700 constraints!
For now, we will continue to formulate the model as we had been doing, but we
will later examine an alternate formulation.

At Lisbon (station 1), he must leave to go somewhere on one of the days of
the month. Hence we have the equality constraint

20

∑
j=2

30

∑
t=1

Y1 jt = 1

At Vladivostok (station 20), he must arrive from somewhere on one of the
days of the month. Hence we have the equality constraint

19

∑
i=1

30

∑
t=1

Yi20t = 1

1Note the index for j which defines it only for j > i.
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We now consider the intermediate stations (stations 2 to 19 inclusive). If he ends
a journey at a particular station, then he must begin a journey from this station on
a subsequent day. Otherwise, he is on a train which does not stop at this station,
or if it does, he does not alight from it. Consider a station k where 2≤ k≤ 19, and
a day d, where 2 ≤ d ≤ 30. If he arrives at k from i before day d, then he must
leave k for j on or after day d. He arrives at k from i before day d if and only if

k−1

∑
i=1

d−1

∑
t=1

Yikt = 1

He leaves k for j on or after day d if and only if

20

∑
j=k+1

30

∑
t=d

Yk jt = 1

Subtraction gives us both the case of ending a journey at k and the case of not
ending a journey at k at once.

k−1

∑
i=1

d−1

∑
t=1

Yikt−
20

∑
j=k+1

30

∑
t=d

Yk jt = 0 k = 2, . . . ,19 d = 2, . . . ,20

If he ends a journey at k, then we have 1−1 = 0, and if he does not end a journey
at k, then we have 0−0 = 0. There is no concern about the constraint being met
by say 2− 2 = 0, because this is prevented, in conjunction with the preceding
set of equations, by the beginning equation at Lisbon, and the ending equation at
Vladivostok.
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Finally, each Yi jt ∈ {0,1}. The complete formulation is therefore:

minimize
19

∑
i=1

30

∑
t=1

tYi20t

subject to

(1)
20

∑
j=2

30

∑
t=1

Y1 jt = 1

(2)
19

∑
i=1

30

∑
t=1

Yi20t = 1

(3), . . . ,
(344)

k−1

∑
i=1

d−1

∑
t=1

Yikt−
20

∑
j=k+1

30

∑
t=d

Yk jt = 0
{

k = 2, . . . ,19
d = 2, . . . ,20

}
(345),

. . . ,
(6044)

Yi jt ≤ si jt


i = 1, . . . ,19
j = i+1, . . . ,20
t = 1, . . . ,30


Yi jt ∈ {0,1}


i = 1, . . . ,19
j = i+1, . . . ,20
t = 1, . . . ,30



An Alternate Formulation

Clearly, the number of constraints given above is highly excessive. The way to
avoid this is simply to never mention a particular Yi jt if the corresponding si jt is 0.
Not only does this remove 5700 constraints, the objective function and the other
constraints are shortened, because the non-relevant Yi jt’s are no longer mentioned.
For example, while there are 19×30 = 570 potential services which end at Vladi-
vostok, perhaps only 40 exist. Hence, the objective function needs only these 40
terms instead of all 570. Since we are using symbolic notation, we need to indi-
cate this fact. If we think of Y as a set, and S as the set of all si jt = 1, then Y ∈ S.
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We will put a restriction indicating this fact under the word minimize.

minimize
Y ∈ S

19

∑
i=1

30

∑
t=1

tYi20t

subject to

(1)
20

∑
j=2

30

∑
t=1

Y1 jt = 1

(2)
19

∑
i=1

30

∑
t=1

Yi20t = 1

(3), . . . ,
(344)

k−1

∑
i=1

d−1

∑
t=1

Yikt−
20

∑
j=k+1

30

∑
t=d

Yk jt = 0
{

k = 2, . . . ,19
d = 2, . . . ,20

}

Yi jt ∈ {0,1} Y ∈ S

C.2 A Branch and Bound Algorithm
Early work on algorithms for integer optimization began with the cutting plane
method (1958), and the branch and bound method (1960). Much research contin-
ued, especially on the branch and bound algorithm.2 More recently, these meth-
ods have been combined to give, a least for certain examples, the ability to solve
large-scale problems.3 The level and scope of the text restricts our discussion to
the general principles of the branch-and-bound algorithm.

C.2.1 Descriptive Overview
The algorithm will be described formally later. This statement will suffice as to
the how of the algorithm. It is the purpose, however, of the section to give an idea
of the why of the methodology.

For a pure integer model, at least, it may seem that a complete enumeration
of all possible solutions would be a possible approach for solving the model opti-
mally. We can think of this as a decision tree, where the first decision is to choose

2For references on this early research see Geoffrion, A.M. and R.E. Marsten, “Integer Program-
ming Algorithms: A Framework and State-of-the-Art Survey,” Management Science, 18 (1972),
465-491.

3Van Roy, T.J. and L.A. Wolsey, “Solving Mixed 0-1 Programs by Automatic Reformulation,”
Operations Research, 35 (1987), 45-57.
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variable 1 to be 0 or 1, the second decision is to choose variable 2 to be 0 or 1,
and so on. The ending nodes of this tree correspond with a particular solution.
For example, if a model has four 0/1 variables, then there are 24 = 16 possible
solutions. We could examine each of these for feasibility, and then choose the
best solution from amongst the feasible solutions. While this works in theory, in
practice the time to examine the solutions becomes prohibitively large as the num-
ber of variables increases, because this growth is exponential. Even if we were to
ignore the fact that the time to examine each solution increases as the size of the
problem increases (which of course only makes things worse), the effect of prob-
lem size on computer time is staggering. Where n is the number of 0/1 variables,
if a computer examines 1,000,000 solutions per second we obtain:

n 2n Time
10 1,024 1.024 millisecond
20 1,048,576 1.048 second
30 1,073,741,824 17.90 minutes
40 1.0995×1012 12.73 days
50 1.1259×1015 35.68 years

Hence, complete enumeration is impractical except for small examples. This
motivates us to seek a better algorithm. Unfortunately, there is no algorithm
which, for an integer model of arbitrary structure, can in the worst case scenario
break away from the exponential nature which plagues complete enumeration.
However, an algorithm may give the optimal solution in a reasonable time for
most medium sized problems.4

Continuing the metaphor of a tree, the branch and bound algorithm seeks to re-
duce the number of solutions examined by judiciously pruning many of the tree’s
potential branches. The tree is built by the algorithm adding branches when nec-
essary. When the algorithm identifies that adding branches is not necessary, we
can think of these branches and all the branches coming off these branches as
having been pruned. In the worst case, nothing is pruned, and hence the num-
ber of twigs is the same as it is for complete enumeration, but usually we can
do much better than this. Unlike a deterministic decision tree, which connects
decisions, the branch and bound tree connects solutions. This algorithm contains
a second metaphor, that of parents and children. Each person is a linear model
with a corresponding solution, with each child being connected to its parent by a

4Some problems are simply not solvable in our lifetimes. Chess is an example – the tree size
becomes enormous in part because there are often many legal moves at each player’s turn.
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branch. Solving the original model is called the master problem; the obtaining of
a solution to a linear model is called a sub-problem.

Since our integer models only differ from the standard linear models in that
some of the variables have integrality restrictions, the starting point of the algo-
rithm is to solve the model as if these restrictions were replaced by the standard
non-negativity restrictions. We call this the relaxed model since we have relaxed
the integrality restrictions. The relaxed model is of course solvable by the sim-
plex algorithm, which we already know how to do. If the optimal solution to the
relaxed model obeys the integrality restrictions anyway, then we have the optimal
solution to the integer model.5 Otherwise, we must continue.

We can think of the original relaxed model as sub-problem 1, with an OFV
which is labelled OFV(1). If the master problem is a maximization model, then
OFV(1) represents an upper bound (UB) to OFV∗, since when the integrality re-
strictions are added it can only impair6 the OFV. Conversely, if the master problem
is a minimization model, then OFV(1) represents a lower bound (LB) to OFV∗.

Sometimes, a feasible solution to the integer model is trivially obvious. In
such a situation, we have identified a solution with which all other solutions can
be compared. We will always compare a new solution with the best one found
so far, called the incumbent (I) solution. At the outset, the first feasible solution
found serves as the incumbent. For a maximization problem, OFV∗ ≥ OFV(I).
For a minimization problem, OFV∗ ≤ OFV(I). If there is no obvious feasible
solution, we can always state that OFV∗ > −∞ for a maximization problem, and
OFV∗ < ∞ for a minimization problem. The incumbent establishes a lower bound
for the value of OFV∗ for a max model; it establishes an upper bound for the value
of OFV∗ for a min model.

Putting all this together we see that

max model −∞ < OFV(I) ≤ OFV∗ ≤ OFV(1)

min model OFV(1) ≤ OFV∗ ≤ OFV(I) < ∞

Whether max or min, the idea is that OFV∗ is bounded:

LB≤ OFV∗ ≤ UB

5If the linear solution provided by the computer is not linear, but if multiple optima exist, then
one of these alternate solutions may be integer.

6If multiple optima exist it may stay the same, hence the bound is not a strict inequality.
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As the algorithm progresses, higher values for LB and/or lower values for UB will
be discovered until we reach a point where LB = OFV∗ = UB. The solution for
which this equation is true is therefore the optimal solution to the master problem.

The two children are like their parent except that each one has either an extra
constraint or a modified constraint. The children are created so that there is no
overlap, but at the same time no valid solution is excluded. For example, suppose
that the original model requires that Y5 ∈ {0,1,2, . . .}. If in the current solution
Y5 = 3.481, we can break this apart by adding the constraint Y5 ≤ 3 to one child,
and by adding the constraint Y5 ≥ 4 to the other. The optimal solution must then
obey the constraint set of one of the two children.

The operation which creates the children is called branching. This process of
branching can be used to create grand-children and so on. If it can be shown that
the best solution amongst a sub-problem and all its descendants (given by this sub-
problem’s OFV) is worse than an already known feasible solution to the original
integer problem (given by the OFV of the incumbent), then this sub-problem and
all its descendants can be eliminated from consideration. The determination of this
elimination is called bounding; the elimination itself is often called fathoming.

It is partly the fathoming which allows the branch and bound algorithm to save
time compared with complete enumeration, but finding integer or infeasible sub-
problems helps as well. There is no point in examining any of the descendants of
a sub-problem if any of these three conditions holds:

1. the solution to the sub-problem is infeasible

2. the OFV of the sub-problem is worse than the OFV of the incumbent (‘worse’
means ‘greater than’ for a min problem, and ‘less than’ for a max problem).

3. the solution to the sub-problem is valid for the original model (i.e. if all
variables which must be 0/1 or general integer are precisely that)

If the third condition holds, the solution is compared with the incumbent. If
the new one is better (lower OFV for a min model, higher OFV for a max model),
then the current sub-problem becomes the new incumbent.

As sub-problems are solved, unless one of the three stated conditions holds,
two children sub-problems are created. This creates or adds to a queue of sub-
problems waiting to be solved. When the queue becomes empty, the best integer
solution found to that point, the incumbent, is declared to be the optimal solution
to the original model. (Equivalently, the upper and lower bounds have converged.)
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This optimal solution may have been found early in the search procedure, how-
ever, it is only after the queue of sub- problems vanishes that we can say for certain
that it is optimal.

We now give two examples to illustrate the algorithm. After that follows a
formal statement of the branch and bound algorithm for integer optimization.

C.2.2 A Maximization Example

maximize 3.1X + 2.7Y + 8.4G1 + 5.9G2
subject to

(1) 1.7X + 8Y + G1 + 6G2 ≤ 20
(2) 2X + 5Y + 4G1 + 3G2 ≤ 31
(3) 0.8X + 0.4Y + 2G1 + 1.3G2 ≤ 15
(4) G1 + 2G2 ≤ 10
(5) 2X + 7Y ≤ 12
(6) 2G1 + 7G2 ≤ 25

X ≥ 0, Y ∈ {0,1}, G1,G2 ∈ {0,1,2, . . .}

This example contains a continuous variable, a 0/1 variable, and two general inte-
ger variables.

We now relax the integrality restrictions and replace them with the standard
non-negativity restrictions Y ≥ 0, G1 ≥ 0, and G2 ≥ 0. We call this new model
sub-problem 1. Solving this as an ordinary linear optimization problem we obtain:

OFV(1) = 63.846060
X = 0.000000
Y = 0.070539

G1 = 6.342324
G2 = 1.759336

Since (1) is not a valid solution for the original model we must continue. Since
each constraint is of the less-than-or-equal-to type with only positive structural co-
efficients, we can round each variable downwards to obtain the following feasible
solution to the original model:

OFV(1) = 56.3
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X = 0.0
Y = 0

G1 = 6
G2 = 1

(Note that the value of the continuous variable X is written as a real number.)
Hence the incumbent solution has an OFV of 56.3, and

LB = 56.3≤ OFV∗ ≤ 63.84606 = UB

We need to create two descendant sub-problems numbered (2) and (3). To accom-
plish this we could choose any variable which is supposed to be integer but which
is not, and in one sub-problem restrict this variable to be no more than the integer
number just below the current value of this variable, and in the other sub-problem
restrict this variable to be no less than the integer number just above the current
value of this variable.

For example, in sub-problem (1) Y = 0.070539. This variable is supposed to
be either 0 or 1. Hence we could require Y to be 0 in subproblem (2), and require
it to be 1 in sub-problem (3). This would be done by adding an equality constraint
to sub-problem (1). Another choice is variable G1, which is currently 6.342324.
If we were to choose this variable then we would add the constraint G1 ≤ 6 to
sub-problem (2), and add the constraint G1 ≥ 7 to sub-problem (3). Finally, we
could choose to branch on G2, which is currently 1.759336, by adding G2 ≤ 1 to
sub-problem (2), and G2 ≥ 2 to sub-problem (3). [We would never branch on X ,
because it is a continuous variable.]

There is no exact rule for deciding which variable should be chosen. One
strategy is to choose the integer variable whose current value is furthest away
from the nearest integer number. [Or equivalently, choose the integer variable
whose fractional component is closest to 0.5] For the example at hand we have
0.07 for Y , 0.34 for G1, and 1−0.76 = 0.24 for G2. Hence, using this strategy we
would choose to branch on G1.

Sub-problem (2) is the same as sub-problem (1) except that we add the con-
straint G1 ≤ 6; sub-problem (3) is the same as sub-problem (1) except that we add
the constraint G1 ≥ 7. These sub-problems are put into a queue of sub-problems
waiting to be solved. The information which needs to be stored concerning the
sub-problems in the queue is the sub-problem number, the number of its parent,
the new constraint which differentiates it from its parent, and the OFV of the par-
ent. Hence the queue is:
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Sub-problem New OFV
Number Parent Constraint (Parent)

2 1 G1 ≤ 6 63.846
3 1 G1 ≥ 7 63.846

While there are many rules that one could use concerning the selection of a
sub-problem from the queue, a reasonable one for our purposes is to select the sub-
problem whose parent has the most favourable OFV (highest in a max problem,
lowest in a min problem), and break a tie by choosing the lower numbered sub-
problem (FIFO). Obviously, (2) and (3) share the same parent so we begin with
(2).

Solving (2) yields the solution:

OFV(2) = 63.571430
X = 0.714286
Y = 0

G1 = 6
G2 = 1.857143

This solution does not fall into any of the three categories which would lead to
abandoning a further search along this path, i.e. the solution is not infeasible, it is
not worse than the incumbent (63.57143 6≤ 56.3), and it is not a feasible solution
for the original problem. Therefore, we create two descendants, branching on
variable G2. Sub-problem (4) is the same as its parent (which is (2)), except that
we add the constraint G2 ≤ 1; sub-problem (5) is like (2) except that we add the
constraint G2 ≥ 2.

To keep all this straight, we will draw a tree with boxes to represent each sub-
problem. Each box contains the sub-problem number (top line, left), the iteration
number (top line, right), the value of the LB for a max model (UB for a min model)
just prior to solving the sub-problem (second line), the OFV and the values of the
variables (third to seventh lines), and finally a statement (eighth line) concerning
the variable upon which to branch, or a reason for not branching. In the latter
case, we will use the words “infeasible” if the relaxation is infeasible, “OFV >
UB” (minimization) or “OFV < LB” (maximization), or “valid” to mean that all
constraints and integrality restrictions of the original model are satisfied.

At the moment, the boxes for (1) and (2) are complete, and the boxes for (3),
(4), and (5) are drawn but empty. A line connects each box (except (1)) to its
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@G1 ≤ 6 G1 ≥ 7

G2 ≤ 1 G2 ≥ 2 G2 = 0 G2 ≥ 1

G1 ≤ 5 G1 ≥ 6 G1 ≤ 7 G1 ≥ 8

Y = 0 Y = 1

1 1
LB = 56.30

OFV = 63.85
X = 0.0000
Y = 0.0705
G1 = 6.3423
G2 = 1.7593
Branch on G1

2 2
LB = 56.30

OFV = 63.57
X = 0.7143
Y = 0
G1 = 6
G2 = 1.8571
Branch on G2

3 3
LB = 56.30

OFV = 63.49
X = 0.0000
Y = 0.1698
G1 = 7
G2 = 0.7170
Branch on G2

4 4
LB = 56.30

OFV = 62.50
X = 2.0000
Y = 0
G1 = 6
G2 = 1

Valid

5 5
LB = 62.50

OFV = 62.56
X = 1.4706
Y = 0
G1 = 5.5000
G2 = 2
Branch on G1

6 6
LB = 62.50

OFV = 63.24
X = 0.0000
Y = 0.2381
G1 = 7.4524
G2 = 0
Branch on G1

7 7
LB = 62.50
OFV = n.a.
X =n.a.
Y =n.a.
G1 =n.a.
G2 =n.a.
Infeasible

8 10
LB = 62.675

OFV ≤ 62.56
or
infeasible

Purged at 10

9 10
LB = 62.675

OFV ≤ 62.56
or
infeasible

Purged at 10

10 8
LB = 62.50

OFV = 62.82
X = 1.1875
Y = 0.1250
G1 = 7
G2 = 0
Branch on Y

11 9
LB = 62.50
OFV = n.a.
X =n.a.
Y =n.a.
G1 =n.a.
G2 =n.a.
Infeasible

12 10
LB = 62.50

OFV = 62.675
X = 1.2500
Y = 0
G1 = 7
G2 = 0

Valid

13 11
LB = 62.675
OFV = n.a.
X =n.a.
Y =n.a.
G1 =n.a.
G2 =n.a.
Infeasible

Figure C.1: Branch and Bound Tree for a Maximization Example
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parent, next to which is a statement of the constraint which has been added to the
parent. The completed tree is shown in Figure C.1.

Now sub-problems 3, 4, and 5 are in the queue. Using the stated rule (choose
the parent with the highest OFV for a max model), we choose sub-problem 3
(63.846 vs 63.571). This is the same as sub-problem 1, except that we add the
constraint G1 ≥ 7.7

Solving sub-problem 3 we obtain:

OFV(3) = 63.48868
X = 0.0
Y = 0.169811

G1 = 7
G2 = 0.716981

This solution is feasible, is not worse than the incumbent (since 63.49 > 56.3),
and is not integer, and hence we branch. Since G2 is 1− .717 = 0.283 > .170
we branch on it rather than Y . We create two descendants: sub-problem 6 adds
the constraint G2 = 0 to sub-problem 3, while sub-problem 7 adds the constraint
G2 ≥ 1 to sub-problem 3. There are now four sub-problems in the queue:

Sub-problem New OFV
Number Parent Constraint (Parent)

4 2 G2 ≤ 1 63.571
5 2 G2 ≥ 2 63.571
6 3 G2 = 0 63.489
7 3 G2 ≥ 1 63.489

For a max model, the OFV(parent) in the queue represents an upper bound
to OFV∗ (for a min model it represents a lower bound). The new upper bound is
therefore 63.571, and

56.3≤ OFV∗ ≤ 63.571

As the iterations proceed, the lower and upper bounds will converge to the OFV
of the optimal integer solution.

7As a practical measure, since it consumes a lot of memory to store every model, and since sub-
problem 2 was the last one solved, sub-problem 3 can be obtained by altering the last constraint of
sub-problem 2 from G1 ≤ 6 to G1 ≥ 7. Doing this can be tricky when the last sub-problem solved
is nowhere near the current sub-problem on the tree.



C.2. A BRANCH AND BOUND ALGORITHM 501

Examining the queue we remove sub-problem 4. Solving we obtain:

OFV(4) = 62.5
X = 2.0
Y = 0

G1 = 6
G2 = 1

Since Y ∈ {0,1}, and G1,G2 ∈ {0,1,2, . . .} as the original model requires, we do
not branch further down this path. Moreover, this feasible solution to the original
problem is better than the incumbent (62.5 > 56.3), hence sub-problem 4 becomes
the new incumbent. We therefore have a new lower bound of 62.5. Either this is
the optimal solution, or the optimal solution which remains to be discovered is
better than this. Hence:

62.5≤ OFV∗ ≤ 63.571

Hence the optimal solution is at most 1.071 units higher than the incumbent. We
now solve sub-problem 5, obtaining:

OFV(5) = 62.559
X = 1.47058
Y = 0

G1 = 5.50000
G2 = 2

All three tests for fathoming this sub-problem are false so we create sub- problems
8 and 9 by branching on G1. The queue is now:

Sub-problem New OFV
Number Parent Constraint (Parent)

6 3 G2 = 0 63.489
7 3 G2 ≥ 1 63.489
8 5 G1 ≤ 1 62.559
9 5 G1 ≥ 2 62.559

The largest number in the final column gives UB = 63.489, and hence

62.5≤ OFV∗ ≤ 63.489
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Solving sub-problem 6 yields:

OFV(6) = 63.243
X = 0.000000
Y = 0.238095

G1 = 7.452381
G2 = 0

None of the three fathoming tests applies, so we branch on variable G1 to create
sub-problems 10 and 11. The queue is:

Sub-problem New OFV
Number Parent Constraint (Parent)

7 3 G2 ≥ 1 63.489
8 5 G1 ≤ 1 62.559
9 5 G1 ≥ 2 62.559
10 6 G1 ≤ 7 63.243
11 6 G1 ≥ 8 63.243

Removing sub-problem 7 from the queue we see that it is infeasible, so we do
not branch on it. With 7 gone the upper bound becomes 63.243. Next, we remove
sub-problem 10, and solve it to obtain:

OFV(10) = 62.819
X = 0.1875
Y = 0.1250

G1 = 7
G2 = 0

Examining this we see that we must branch on Y to create sub-problems 12 and
13. The queue is:

Sub-problem New OFV
Number Parent Constraint (Parent)

8 5 G1 ≤ 1 62.559
9 5 G1 ≥ 2 62.559
11 6 G1 ≥ 8 63.243
12 10 Y = 0 62.819
13 10 Y = 1 62.819
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We remove sub-problem 11 from the queue, and find that it is infeasible. With
it now gone from the queue, the upper bound becomes 62.819. Examining sub-
problem 12 we find:

OFV(12) = 62.675
X = 1.25
Y = 0

G1 = 7
G2 = 0

This is integer so we do not branch on it. Furthermore, it is better than the incum-
bent so this solution becomes the new incumbent. Hence we have established a
new lower bound of 62.675, and it follows that:

62.675≤ OFV∗ ≤ 63.243

At this point we can see that even if sub-problems 8 and 9 are feasible, they
cannot be optimal since the OFV cannot exceed the current lower bound. Hence
sub-problems 8 and 9 are purged from the queue. This leaves only sub-problem
13, which we find to be infeasible. The queue is now empty, and we see that
sub-problem 10 is optimal with OFV∗ = 62.675.

The optimal integer solution is

OFV∗ = 62.675
X∗ = 1.25
Y ∗ = 0
G∗1 = 7
G∗2 = 0

The convergence of the lower and upper bounds is shown in the following
table, the figures referring to the end of the iteration.
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Iteration Sub-problem LB UB
1 1 56.300 63.846
2 2 56.300 63.846
3 3 56.300 63.571
4 4 62.500 63.571
5 5 62.500 63.488
6 6 62.500 63.488
7 7 62.500 63.243
8 10 62.500 63.243
9 11 62.500 62.819

10 12 (8,9) 62.675 62.819
11 13 62.675 62.675

The rules for choosing a variable on which to branch, and the rule for deter-
mining the order in which the sub-problems are solved are not cast in stone. For
example, a simpler rule is to solve the sub-problems in the order in which they
were created. If we had done this, the eighth and ninth sub-problems would have
had to have been solved. The solution to the eighth sub-problem is:

OFV(8) = 59.271
X = 1.764706
Y = 0

G1 = 5
G2 = 2

Because 59.271 < LB = 62.5, we would not have branched further down this path.
Sub-problem 9 is in fact infeasible. Hence the simpler rule would have required
13 iterations rather than the 11 which we found earlier.
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C.2.3 A Minimization Example
The complete formulation of the fixed charge problem discussed earlier is:

minimize 2000Y1 +3000Y2 +1500Y3 +2400Y4 +2700Y5
+3.8R1 +2.9R2 +4.2R3 +3.4R4 +3.6R5

+4.6O1 +4.1O2 +5.6O3 +4.2O4 +5.1O5
subject to

(1) R1−1000Y1 ≤ 0
(2) R2−1200Y2 ≤ 0
(3) R3−1500Y3 ≤ 0
(4) R4−1300Y4 ≤ 0
(5) R5−1400Y5 ≤ 0
(6) O1−400Y1 ≤ 0
(7) O2−550Y2 ≤ 0
(8) O3−600Y3 ≤ 0
(9) O4−450Y4 ≤ 0
(10) O5−500Y5 ≤ 0
(11) R1 +R2 +R3 +R4 +R5+

O1 +O2 +O3 +O4 +O5 ≥ 5100

Yi ∈ {0,1} Ri,Oi ≥ 0 i = 1, . . . ,5

We begin by relaxing the integrality restrictions, replacing Yi ∈ {0,1} by 0 ≤
Yi ≤ 1 for i = 1, . . . ,5. The relaxed model is not integer; omitting the continuous
variables the solution is:

OFV(1) = 25,786.58
Y1 = 0
Y2 = 1
Y3 = 1
Y4 = 1
Y5 = 0.052632

Since this solution is not naturally integer, we need to perform the branch and
bound algorithm, which is shown in Figure C.2.

Because this is a min model, OFV(1) will serve as a lower bound to the OFV
of the optimal integer solution. To obtain an upper bound, we can round Y5 up to
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Y1 = 0 Y1 = 1

Y5 = 0 Y5 = 1

1 1
UB = 27,525.00

OFV = 25,786.58
Y1 = 0 Y2 = 1
Y3 = 1 Y4 = 1
Y5 = 0.052632

Branch on Y5

2 2
UB = 27,525.00

OFV = 25,790.71
Y1 = 0.071429
Y2 = 1 Y3 = 1
Y4 = 1 Y5 = 0

Branch on Y1

3 3
UB = 27,525.00

OFV = 26,205.00
Y1 = 0 Y2 = 1
Y3 = 0 Y4 = 1
Y5 = 1

Valid

4 4
UB = 26,205.00

OFV = 25,805.00
Y1 = 0 Y2 = 1
Y3 = 1 Y4 = 1
Y5 = 0

Valid

5 5
UB = 25,805.00

OFV = 26,125.00
Y1 = 1 Y2 = 1
Y3 = 0.133333
Y4 = 1 Y5 = 0

OFV > UB

Figure C.2: Branch and Bound Tree for a Minimization Example
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1, keeping the other Y variables at their current values. Solving for the continuous
variables we obtain an OFV of 27,525.00. Hence

25,786.58≤ OFV∗ ≤ 27,525.00

We branch on Y5, adding constraint Y5 = 0 to sub-problem 2, and adding constraint
Y5 = 1 to sub-problem 3. Solving sub-problem 2 we obtain:

OFV(2) = 25,790.10
Y1 = 0.071429
Y2 = 1
Y3 = 1
Y4 = 1
Y5 = 0

Since none of the three fathoming tests applies, we create sub-problems 4 and 5,
adding Y1 = 0 to the former, and Y1 = 1 to the latter. Removing sub-problem 3
from the queue and solving it we obtain:

OFV(3) = 26,205.00
Y1 = 0
Y2 = 1
Y3 = 0
Y4 = 1
Y5 = 1

Since this solution is integer, we do not branch on it. Furthermore, this integer
solution is better than the incumbent, so it becomes the new incumbent with UB
= 26,205.00. We also have a new lower bound, which is 25,790.71. The search
has now been narrowed to

25,790.71≤ OFV∗ ≤ 26,205.00

We remove sub-problem 4 from the queue and solve it:

OFV(4) = 25,805.00
Y1 = 0
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Y2 = 1
Y3 = 1
Y4 = 1
Y5 = 0

This integer solution becomes the new incumbent with UB = 25,805.00, giving:

25,790.71≤ OFV∗ ≤ 25,805.00

Solving sub-problem 5 we determine:

OFV(5) = 26,125.00
Y1 = 0
Y2 = 1
Y3 = 0.133333
Y4 = 1
Y5 = 0

This solution has OFV > UB, so according to the second fathoming test, we do
not proceed further down this branch. The queue is now empty, so the incumbent
is optimal. The optimal solution for all variables is:

OFV∗ = 25,805.00
Y ∗1 = 0
Y ∗2 = 1
Y ∗3 = 1
Y ∗4 = 1
Y ∗5 = 0
R∗1 = 0
R∗2 = 1200
R∗3 = 1500
R∗4 = 1300
R∗5 = 0
O∗1 = 0
O∗2 = 550
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O∗3 = 100
O∗4 = 450
O∗5 = 0

The lower and upper bounds at the end of each iteration were:

Iteration Sub-problem LB UB
1 1 25,786.58 27,525.00
2 2 25,786.58 27,525.00
3 3 25,790.71 26,205.00
4 4 25,790.71 25,805.00
5 5 25,805.00 25,805.00

C.2.4 Formal Statement of the Algorithm

STEP ONE

(i) Consider the original integer model. Create a new model in which we relax
the integrality restrictions, by replacing them with the standard non-negativity
restrictions, and in the case of a 0/1 variable, by adding a constraint requiring that
this variable be less than or equal to 1. This relaxed model is called sub-problem
1. Solve sub-problem 1 as a linear optimization problem.
(ii) Should there be no feasible solution to sub-problem 1, then there is no feasible
solution to the original model, and hence STOP.
(iii) Let the OFV of sub-problem 1 be denoted as OFV(1). If the solution to
sub-problem 1 obeys the integrality restrictions of the original model, then this
solution is optimal with OFV∗ = OFV(1), and hence STOP.
(iv) For a max model, let UB = OFV(1); for a min model, let LB = OFV(1).
(v) Let m = 1, M = 1, and n = 1. [m is the number of the current sub- problem, M
is the number of sub-problems created so far, and n is the iteration number.]

STEP TWO

(i) Try to find a feasible solution to the original integer model. If one is found, go
to (ii), otherwise go to (iii).
(ii) Call this solution the incumbent solution. For a max model, let LB = OFV(incumbent);
for a min model, let UB = OFV(incumbent). Go to (iv).
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(iii) For a max model, let LB = −∞; for a min model, let UB = +∞.
(iv) Hence we have, for max or min,

LB≤ OFV∗ ≤ UB

STEP THREE

(i) Choose a variable which is required to be integer in the original model, but
whose value is not integer in the linear solution to sub-problem m. [A possible
strategy here is to choose the one whose current value has a fractional component
closest to 0.5]
(ii) Create two sub-problems, numbered M+1 and M+2, and increase the value
of M by 2.
(iii) In sub-problem M + 1, the model is as it was in sub-problem m except that
we add a constraint which requires that the variable chosen in (i) be less than or
equal to the integer number which is just below its current value.
(iv) In sub-problem M+2, the model is as it was in sub-problem m except that we
add a constraint which requires that the variable chosen in (i) be greater than or
equal to the integer number which is just above its current value.
(v) Add both sub-problems to a queue of sub-problems to be examined.

STEP FOUR

(i) If the queue is not empty, then go to (iv).
(ii) If there be no incumbent, then go to (iii). Otherwise, the incumbent is optimal.
If max, then UB = LB, and OFV∗ = LB, and if min, then LB = UB, and OFV∗ =
UB, and hence STOP.
(iii) Since no incumbent exists, the original model has no feasible solution, and
hence STOP.
(iv) For a max model, UB = largest OFV(parent). For a min model, LB = smallest
OFV(parent).
(v) Remove a sub-problem from the queue. [A possible strategy here is choose
the sub-problem whose parent has the largest OFV for a max problem or smallest
OFV for a min problem. Ties can be broken using FIFO – First In, First Out.]
This sub-problem has number m.
(vi) Increase the value of n by one.
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STEP FIVE

We are at iteration n of the branch and bound algorithm.
(i) Solve sub-problem m.
(ii) If the solution is infeasible, then go to STEP FOUR. [Sub-problem m has been
fathomed at iteration n.]
(iii) If, for a max model, OFV ≤ LB, or if, for a min model, OFV ≥ UB, then go
to STEP FOUR. [Sub-problem m has been fathomed at iteration n.]
(iv) If the solution does not obey the integrality restrictions of the original model,
then go to STEP THREE.
(v) If the integer solution to sub-problem m has OFV(m)≤ LB for a max model,
or OFV(m)≥ UB for a min model, then go to STEP FOUR. [If true, sub-problem
m is no better than the incumbent.]
(vi) Sub-problem m becomes the new incumbent.
For a max model, LB = OFV(m)
For a min model, UB = OFV(m)
(vii) Purge each sub-problem in the queue whose parent’s OFV is less than LB for
a max problem, or greater than UB for a min problem.
(viii) Go to STEP FOUR.

C.2.5 Manual Implementation

There are two ways for a student to use the branch and bound algorithm. One
way is to use it to solve two-variable examples, solving each sub-problem graphi-
cally. For example, for the graphical model presented earlier, there is a tie for the
variable on which to branch, since X1 = 42

7 , and X2 = 35
7 , and hence both are 2

7
from the nearest integer. Arbitrarily choosing X1, we let X1 ≤ 4 in sub-problem
2, and X1 ≥ 5 in sub-problem 3, we obtain X1 = 4, and X2 = 32

3 in sub-problem
2, and sub-problem 3 is infeasible. Descending from sub-problem 2 we create
sub-problem 4 with X2 ≤ 3, and sub-problem 5 with X2 ≥ 4. In sub-problem 4,
X1 = 2.5, and X2 = 3; sub-problem 5 is infeasible. Descending from sub-problem
4, we create sub-problem 6 with X1 ≤ 2, and sub-problem 7 with X1 ≥ 3. Sub-
problem 6 is integer with X1 = 2, X2 = 3, and OFV = 17. This becomes the
incumbent solution. Sub-problem 7 is infeasible. There being no sub-problems
left to examine, the incumbent found at sub-problem 6 is optimal. (Of course, a
two-variable example can be solved graphically directly).

The other way is to operate a master problem by hand, solving each sub-
problem using a linear optimization software package. The only point of doing
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either of these things is to study the branch and bound algorithm for illustrative
purposes. Obviously, in practice integer models are solved directly using a spread-
sheet solver or a dedicated optimization package.

C.2.6 Problems for Student Completion
1. Solve the following integer optimization model using the branch and bound

algorithm. At each iteration of the master problem solve the relaxed prob-
lem using the graphical solution technique for linear optimization. Use the
branching rules given in the text.

max X1 + 2X2
subject to

(1) 2X1 + X2 ≤ 5
(2) X1 + 4X2 ≤ 12
(3) 5X1 + X2 ≥ 5

X1 , X2 ∈ {0,1,2, . . .}

2. Solve the following integer optimization model using the branch and bound
algorithm. At each iteration of the master problem solve the relaxed prob-
lem using the graphical solution technique for linear optimization. Use the
branching rules given in the text.

min 4X1 + 3X2
subject to

(1) X1 + 2X2 ≥ 4
(2) 5X1 + 2X2 ≥ 10
(3) 5X1 + 3X2 ≤ 15

X1 , X2 ∈ {0,1,2, . . .}

3. Solve the following integer optimization model using the branch and bound
algorithm. At each iteration of the master problem solve the relaxed prob-
lem using the graphical solution technique for linear optimization. Use the
branching rules given in the text of this chapter.

Note that a trivial feasible solution to the original problem is X1 = 0, and
X2 = 0.
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max 5X1 + 6X2
subject to

(1) 20X1 + 5X2 ≤ 64
(2) 8X1 + 10X2 ≤ 41

X1 , X2 ∈ {0,1,2, . . .}

4. Solve the following integer optimization model using the branch and bound
algorithm. At each iteration of the master problem solve the relaxed prob-
lem using software for linear optimization (i.e. do not declare the variables
to be integer). Use the branching rules given in the text.

max 4X1 + 3X2 + 10X3
subject to

(1) 3X1 + 2X2 + 8X3 ≤ 37
(2) 2X1 + 5X2 + 4X3 ≤ 25
(3) 7X1 + 4X2 + 6X3 ≤ 48
(4) 5X1 + X2 + 2X3 ≥ 23

X1 , X2 , X3 ∈ {0,1,2, . . .}

5. Solve the following integer optimization model using the branch and bound
algorithm. At each iteration of the master problem solve the relaxed prob-
lem using software for linear optimization (i.e. do not declare the variables
to be integer). Use the branching rules given in the text.

min 7X1 + 3X2 + 2X3
subject to

(1) 8X1 + 5X2 + 4X3 ≥ 21
(2) 4X1 + 2X2 + 7X3 ≥ 18
(3) 6X1 + 3X2 + 2X3 ≥ 33
(4) 7X1 + 6X2 + 4X3 ≤ 57

X1 , X2 , X3 ∈ {0,1,2, . . .}
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Appendix D

Review of Differential Calculus

D.1 Overview

The reader will have presumably completed a course in differential calculus, in
which an unconstrained function of a single variable is optimized. The process is:

1. Model the problem using a single variable x,1 to create a function f (x) that
we seek to optimize (i.e., maximize or minimize depending on the situa-
tion).

2. Using the rules of differentiation, find the first derivative f ′(x).

3. Set f ′(x) = 0, and solve this to obtain solution x.

4. Find the second derivative f ′′(x).

5. Evaluate f ′′(x) at x = x. If f ′′(x)> 0, then the function has a local minimum
at x = x. If f ′′(x) < 0, then the function has a local maximum at x = x. If
f ′′(x) = 0, then further testing is required to determine whether this point is
a local maximum, a local minimum, or neither of these.

1Though we have been using capital letters for variable names, here we use small x to reflect
the using of most calculus textbooks.

515
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D.2 Details of the Procedure

D.2.1 Rules of Differentiation
Some of the rules of differentiation mentioned in Step 2 are as follows:

Rule Function Derivative

1 f (x) = a f ′(x) = 0

2 Power f (x) = xn f ′(x) = nxn−1

3 f (x) = ag(x) f ′(x) = ag′(x)

4(a) f (x) = u(x)+ v(x) f ′(x) = u′(x)+ v′(x)
4(b) f (x) = u(x)− v(x) f ′(x) = u′(x)− v′(x)

5 Product f (x) = u(x)v(x) f ′(x) = u′(x)v(x)+u(x)v′(x)

6 Quotient f (x) =
u(x)
v(x)

f ′(x) =
u′(x)v(x)−u(x)v′(x)

(v(x))2

7 f (x) = eax f ′(x) = aeax

Special case a = 1
f (x) = ex f ′(x) = ex

8 f (x) = ln(ax) f ′(x) =
1
x

(a > 0;x > 0)

9 Chain f (u), where u = u(x) f ′(x) = f ′(u)u′(x)

D.2.2 Finding Extreme Points
When we optimize a function f (x), we are trying to find the value or values of x
at which the function is maximized or minimized. A point x at which a maximum
or minimum of f (x) occurs is called an extreme point.

Suppose that we seek the maximum of a function. To be precise, the maximum
of the function over the domain of the variable is called the global maximum (or
absolute maximum). This is what we seek, but we might first have to examine
several local maxima. A local maximum (or relative maximum) is a point which
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is higher than the neighbouring values of the function, but might not be a global
maximum. However, if there is only one local maximum, then it must also be a
global maximum. Fortunately, many functions have only one local maximum.

The same concepts apply if we are seeking to minimize a function. We want
the global minimum, which may be one of several local minima. However, if there
is only one local minimum, then it must also be a global minimum. Fortunately,
many functions have only one local minimum.

Having a unique maximum/minimum is especially true of functions which
arise from business applications, as opposed to contrived mathematical examples.
We begin by considering an unconstrained function f (x), which is continuous
and differentiable for all real numbers.

D.2.3 Local Maxima and Minima
A necessary condition for a function to attain a local maximum or a local mini-
mum at a point x is that

f ′(x) = 0

Another way of saying this is that

f (x) has a local max or min at x =⇒ f ′(x) = 0

The converse, however, is not true. For example, if f (x) = (x−5)3, then f ′(x) =
3(x−5)2, which is 0 when x is 5. However, the function is neither maximized nor
minimized at x = 5.

A point x is said to be stationary if f ′(x) = 0. Hence the statement “find all
the stationary points of f (x)” means “find all the values of x for which f ′(x) = 0”.
At a stationary point, the function could attain

• a local maximum or

• a local minimum or

• neither a local maximum nor a local minimum

D.2.4 The Second Derivative Test
To help determine which of the three cases applies, we need to examine the sec-
ond derivative at the stationary point x = x. If the second derivative is negative
( f ′′(x)< 0), then the function has a local maximum at the stationary point. If the
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second derivative is positive ( f ′′(x) > 0), then the function has a local minimum
at the stationary point. If the second derivative is zero ( f ′′(x) = 0), then we do not
know what we have: there could be a local maximum, or there could be a local
minimum, or there could be neither one nor the other.2 To determine what we
have, we must examine the third or possibly even higher order derivatives at the
stationary point. To do this, find the smallest value of n such that

f (n)(x) 6= 0

If n is odd, then the function attains neither a maximum nor a minimum at x. If n
is even, then

(i) there is a local maximum if f (n)(x)< 0;
(ii) there is a local minimum if f (n)(x)> 0.

D.3 Examples
In the following examples, we seek to discover all stationary points, and to deter-
mine whether at each the function attains a local maximum, or a local minimum,
or neither.

D.3.1 Example 1

f (x) = 3x2−9x+5

The first derivative is
f ′(x) = 6x−9

At f ′(x) = 0,

6x−9 = 0
6x = 9

x = 1.5
2A point where the sign of the second derivative changes is called a “point of inflection”. While

the second derivative must be 0 at an inflection point, the converse is not true: e.g. f (x) = x4 has
f ′′(0) = 0, but x = 0 is not an inflection point because the sign of the second derivative does not
change. Note also that an inflection point need not be a stationary point.
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So the function f (x) = 3x2−9x+5 has a single stationary point at x = 1.5. The
value of the function at this point is

f (1.5) = 3(1.52)−9(1.5)+5
= 6.75−13.5+5
= −1.75

The second derivative is
f ′′(x) = 6

Therefore, f ′′(1.5) = 6 > 0. Hence f (x) has a local minimum at x = 1.5. Note
that f (x)≥−1.75 for all values of x.

D.3.2 Example 2

f (x) =−x2 +8x+15

Hence f ′(x) = −2x+ 8. At f ′(x) = 0, −2x+ 8 = 0, and therefore the solitary
stationary point of f (x) occurs at x = 4. The value of the function at this point is

f (4) = −42 +8(4)+15
= −16+32+15
= 31

The second derivative is f ′′(x) = −2, hence f ′′(4) = −2 < 0. A local maximum
is obtained at x = 4.

D.3.3 Example 3

f (x) =
x
ex

First, we solve this as written. Using the quotient rule we obtain

f ′(x) =
ex(1)− xex

(ex)2

Factoring ex from the numerator and the denominator gives

f ′(x) =
1− x

ex
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The first derivative is zero when the numerator is zero, i.e. f ′(x) = 0 if and
only if 1− x = 0, which occurs at x = 1; this is the only stationary point. The
value of the function at this point is f (1) = e−1 ≈ 0.3679.

To find the second derivative we again use the quotient rule, with u(x) = 1−x
and v(x) = ex.

f ′′(x) =
ex(−1)− (1− x)ex

(ex)2

After factoring ex and simplifying we obtain

f ′′(x) =
x−2

ex

At the stationary point x = 1 the value of the second derivative is

f ′′(1) =
1−2

e1

=
−1
e

< 0

Hence, at x = 1, the function f (x) =
x
ex attains a local maximum.

Alternate Solution Here is another way of solving this problem, which is some-
what easier. We re-write f (x) as

f (x) = xe−x

Using product rule we obtain

f ′(x) = e−x + x(−1)e−x

which simplifies to
f ′(x) = (1− x)e−x

When f ′(x) = 0, we see as before that x = 1. To find the second derivative we use
product rule with u(x) = 1− x and v(x) = e−x.

f ′′(x) = (−1)e−x +(1− x)(−1)e−x

which simplifies to
f ′′(x) = (x−2)e−x

As before, the second derivative is negative at x = 1, and so we have found a local
maximum.
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D.3.4 Example 4

f (x) = (x−2)5

Hence f ′(x) = 5(x− 2)4. At f ′(x) = 0, 5(x− 2)4 = 0, hence there is a single
stationary point at x = 2. The value of the function at this point is f (x = 2) =
(2−2)5 = 0.

The second derivative is f ′′(x) = 20(x−2)3, so at the stationary point f ′′(2) =
20(2−2)3 = 0. The second order test is therefore inconclusive, hence we find the
higher derivatives. These are:

f (3)(x) = 60(x−2)2

Therefore f (3)(2) = 60(2−2)2 = 0

f (4)(x) = 120(x−2)

Therefore f (4)(2) = 120(2−2) = 0

f (5)(x) = 120

Therefore f (5)(2) = 120 6= 0

Hence we have n = 5, which is odd, and therefore the function attains neither a
local maximum nor a local minimum at the stationary point.

D.3.5 Example 5

f (x) = x3−5x2 +7x+8

Therefore
f ′(x) = 3x2−10x+7

To find where f ′(x) = 0 we need to solve

3x2−10x+7 = 0
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This is a quadratic equation with a = 3, b =−10, and c = 7.3 Using the quadratic
formula we obtain

x =
−(−10)±

√
(−10)2−4(3)(7)
2(3)

=
10±4

6
Hence the two roots are x = 1 and x = 21

3 ; f (x) has stationary points at x = 1 and
x = 21

3 (or 7
3 ). The values of the function at these two points are:

f (x = 1) = 13−5(12)+7(1)+8
= 1−5+7+8
= 11

and

f (x = 7
3) =

(
7
3

)3

−5
(

7
3

)2

+7
(

7
3

)
+8

= 12.7037...−27.2222...+16.3333...+8
≈ 9.8148 (or 922

27 exactly)

The second derivative is f ′′(x) = 6x−10. At x = 1 we have

f ′′(x = 1) = 6(1)−10
= −4
< 0

Hence f (x) has a local maximum at x = 1. At x = 21
3 = 7

3 the second derivative is

f ′′(x = 7
3) = 6

(
7
3

)
−10

= 14−10
= 4
> 0

Hence f (x) has a local minimum at x = 21
3 .

3Recall that a quadratic equation is one of the form ax2 + bx+ c = 0 with a 6= 0. As long as
b2 ≥ 4ac it will have real roots given by the quadratic formula:

x =
−b±

√
b2−4ac

2a
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D.3.6 Example 6

f (x) =
ex

x
(x > 0)

Using the quotient rule we obtain

f ′(x) =
xex− ex(1)

x2

=
ex(x−1)

x2

The first derivative is zero when the numerator ex(x− 1) = 0. Since ex > 0 for
all x, the stationary point occurs when x− 1 = 0, i.e. at x = 1. The value of the
function at this point is

f (1) =
e1

1
= e (≈ 2.718)

To find the second derivative of f (x) we use the quotient rule letting u(x) =
ex(x−1) and v(x) = x2. We use the product rule to find u′(x):

u′(x) = ex(1)+ ex(x−1)
= xex

The derivative of v(x) is simply 2x. Hence

f ′′(x) =
x2(xex)− ex(x−1)2x

(x2)2

=
ex(x3− (x−1)2x)

x4

=
ex(x2− (x−1)2)

x3

=
ex(x2−2x+2)

x3

At the stationary point x = 1,

f ′′(x = 1) =
e1(12−2(1)+2)

13

= e(1−2+2)
= e (≈ 2.718)
> 0

Therefore f (x) has a local minimum at x = 1.
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D.4 Global Maximum and Minimum

As we have said, if an unconstrained function has only one maximum/minimum,
then that point must also be a global maximum/minimum. If a function has several
local maxima/minima, the situation is more complicated.

One possibility is that a function could have local maxima/minima, but no
global maximum/minimum. An example of this is the function given in example
5 above ( f (x) = x3− 5x2 + 7x+ 8), which had a local maximum at x = 1, and a
local minimum at x = 21

3 . Clearly as x→∞, f (x) increases indefinitely, and hence
f (x) has no global maximum. As x→−∞, f (x) decreases indefinitely, and hence
f (x) has no global minimum.

Another possibility is that the function has several local maxima and minima,
and the global maximum/minimum is one of these. We would have to find all
these points, and calculate the value of the function at each of these points.

D.4.1 Constrained Optimization

In this section we consider a function f (x) which is continuous and differentiable
over its domain. The domain is one of three forms:

(1) there is a lower endpoint a such that a≤ x, or
(2) there is an upper endpoint b such that x≤ b, or
(3) there are both lower and upper endpoints such that a≤ x≤ b.
Now, the endpoint(s) a and/or b are potential points of optimality. If both

endpoints exist i.e. a ≤ x ≤ b, then f (x) will have a maximum and a minimum
somewhere. We solve such problems by first finding the stationary points (if any)
which lie within the domain of the function.

If there is no stationary point within the domain, then either a is the value of x
which maximizes f (x), and b is the value of x which minimizes f (x), or else f (x)
is minimized at x = a and maximized at x = b. All we have to do is evaluate f (a),
f (b), and compare them.

If f (x) has only one stationary point x within the domain, i.e. a≤ x≤ b, then
the potential points for maximization or minimization are x = a, x = x, and x = b.
What we need to do is evaluate and compare f (a), f (x), and f (b).

If there are two or more stationary points within the domain, then we would
compare f (x) evaluated at x = a and x = b (the endpoints) with f (x) evaluated at
each of the stationary points.
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D.5 Examples

D.5.1 Example 1
We are given

f (x) = x2−10x+25

where the domain of f (x) is 1 ≤ x ≤ 4. We wish to find the value of x which
minimizes f (x).

The first derivative is
f ′(x) = 2x−10

At f ′(x) = 0,

2x−10 = 0
2x = 10
x = 5

The sole stationary point x = 5 is outside of the domain, which is 1 ≤ x ≤ 4. It
is easy to see that for this example the function decreases over the domain, and
hence the minimum must occur at the higher endpoint, x = 4. Another thing we
could do is evaluate the function at the two endpoints, and then see numerically
where the function is minimized.

f (x = 1) = 12−10(1)+25
= 1−10+25
= 16

f (x = 4) = 42−10(4)+25
= 16−40+25
= 1

This function is minimized at x = 4 (and is maximized at x = 1).

D.5.2 Example 2
This is a constrained version of the earlier Example 5. We are given

f (x) = x3−5x2 +7x+8
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where the domain of f (x) is 0≤ x≤ 2.75.

We found earlier that there is a local maximum at x = 1, and a local minimum
at x = 21

3 . Both of these stationary points are within the domain. We need to
compare f (x) at the endpoints with f (x) at the stationary points. Doing this yields:

x f (x) = x3−5x2 +7x+8

endpoint 0 f (0) = 03−5(0)2 +7(0)+8
= 8

stationary point 1 f (1) = 13−5(1)2 +7(1)+8
(local maximum) = 11

stationary point 21
3 f (7

3) =
(7

3

)3−5
(7

3

)2
+7
(7

3

)
+8

(local minimum) = 9.8148

endpoint 2.75 f (2.75) = (2.75)3−5(2.75)2 +7(2.75)+8
= 10.234

The smallest value of f (x) is 8, which occurs at x = 0. The largest value of f (x)
is 11, which occurs at x = 1. Therefore:

x Type of extreme point
0 global minimum
1 global maximum
21

3 local minimum
2.75 local maximum

Although not essential, it is often useful to graph the function over its domain. We
already know four points on the graph: the two endpoints, and the two stationary
points. Even with just these, we can make a rough sketch of the graph. By cal-
culating a few more points, we can obtain a more accurate graph. Doing this we
obtain:
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x

f (x)

(1, 11)

(0, 8)

(21
3 , 9.81)

(2.75, 10.23)

Example 2
f (x) = x3−5x2 +7x+8
where 0≤ x≤ 2.75
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Appendix E

Decision Analysis Extensions

E.1 Probability

E.1.1 Some Preliminaries

Before we consider the subject of probability, we first mention three objects which
will help us understand probability.

Coin

A coin has two essentially flat sides. Since it is the custom to have someone’s
portrait on one side of the coin, we refer to this side of the coin as “heads”, and
we refer to the other side as “tails”. Although it may be theoretically possible
for a coin, when flipped in the air, to land on its cylindrical edge, we generally
discount this possibility, and say that when a coin is flipped there are two possible
outcomes: either it lands with the “heads” side up, or it lands with the “tails” side
up, and we refer to these two outcomes as “heads” and “tails” respectively.

Die

A cube is a six-sided object, each side being a square. A die is a cube in which
each side has a different number of dots ranging from 1 to 6 inclusive. When a
die is flipped it will land on one of its six sides. The outcomes of flipping a die are
expressed by the various number of dots on the “up” side of the die. Hence there
are six outcomes: 1, 2, 3, 4, 5, and 6 dots showing. The plural of die is dice.

529
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Deck of Cards

Unless specified otherwise, we will consider the standard deck of 52 cards, which
is comprised of 13 cards in each of four “suits”. The four suits and their symbols
are clubs ♣, diamonds ♦, hearts ♥, and spades ♠. Though we cannot show the
suits in colour, ♦ and ♥ are the “red suits”, and ♣ and ♠ are the “black suits”.
Within each suit, there are three “face cards”: the King (K), the Queen (Q), and
the Jack (J). There are also the “rank cards”: 10, 9, 8, 7, 6, 5, 4, 3, 2. A thirteenth
card, called the Ace (A), can rank either below the 2 or above the King, depending
on the game. When we deal a card at random from a deck of 52 cards, there are
52 possible outcomes:

2♣ 3♣ 4♣ 5♣ 6♣ 7♣ 8♣ 9♣ 10♣ J♣ Q♣ K♣ A♣
2♦ 3♦ 4♦ 5♦ 6♦ 7♦ 8♦ 9♦ 10♦ J♦ Q♦ K♦ A♦
2♥ 3♥ 4♥ 5♥ 6♥ 7♥ 8♥ 9♥ 10♥ J♥ Q♥ K♥ A♥
2♠ 3♠ 4♠ 5♠ 6♠ 7♠ 8♠ 9♠ 10♠ J♠ Q♠ K♠ A♠

A deck of cards often contains two other cards called the Jokers. Unless indi-
cated to the contrary, we will not use these two cards.

E.1.2 Events and Outcomes

We will refer to situations which have uncertainty as events. Some examples are
(1) the flip of a coin, (2) the toss of a die, and (3) the dealing of a card. The first
is an event with two possible outcomes, of which exactly one will occur; in short
we will say that this is an event with two outcomes. The toss of a die is an event
with six outcomes, and the dealing of a card from a standard deck is an event
with 52 outcomes. Mathematics textbooks refer to what we call an event as an
“experiment”, but this word is not very satisfactory in a business context, where
the event may be the drilling of a hole in the search for oil.

We can draw a picture of an event with its outcomes. The event is drawn as a
circle, and each outcome is a straight line (called a “branch”) radiating from the
right hemisphere of the circle. For the coin toss we have:
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E.1.3 Interpretations of ‘Probability’
What do we mean by the word “probability”? There is no single accepted defini-
tion. Instead there are three interpretations of the word, each of which has limited
validity. All three have one thing in common, however: a probability is a number
between 0 and 1 inclusive.

Laplacian Interpretation

Named after the mathematician Laplace, the interpretation assumes that all out-
comes are equally likely. Since something has to happen when a card is dealt from
a deck of 52 cards, we think of the total probability of all outcomes as 100%, or 1,
and if it can be assumed that each outcome is equally likely, then the probability
of obtaining a particular outcome, say the 8♣, is one chance in fifty-two, or 1

52 .
This assumption is quite reasonable for items such as coins, dice, and cards, but it
has limited applicability elsewhere. For example, suppose that we drill for oil at a
particular spot. We might think of this event as having two outcomes: oil is found,
or oil is not found. We know from the experience of many who have drilled for
oil that we cannot think of the probabilities of these two outcomes in Laplacian
terms – we are far more likely to not find oil.

Empirical Frequency Interpretation

Suppose that a company manufactures 500 units of an item, and then subjects
each unit to a test, with 490 meeting the objectives of the test, and the other 10
units classified as being “defective”. In this sample of 500, the probability (before
testing, of course) that any one unit would turn out to be defective is 10

500 = 0.02.
We often assume that things will keep going are they are now, so that if a 501st
unit is produced, then its probability of being defective is also 0.02. Even if we
can agree that no changes to the production process have occurred which might
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change the probability of being defective, we might (and should) still wonder if
the sample size of 500 is large enough. If we had sampled 10000 units, would
we have found 200 defective units? Another problem with this approach is that
it only deals with the situation where a history has been observed. What does it
mean, for example, to say that a rocket sent to Jupiter has 1% chance of crashing
into the planet, if we have never sent a rocket to Jupiter before?

Subjective Interpretation

One other school of thought suggests that a probability is a number which reflects
a particular individual’s interpretation of the likelihood of a particular outcome.
For example, a geologist may estimate that at a particular location, given his or her
experience with similar areas, that the probability of there being an underground
pool of oil is 0.02 (or 2%). The problem with this approach is that two people
can come up with different probabilities, and neither person can prove that one
number is better than the other.

When dealing with problems involving the tossing of a coin with its two out-
comes, the rolling of a die with its six outcomes, or the drawing of a card at
random from a standard deck with its 52 outcomes, we will use the Laplacian
assumption. A more complicated probability, such as determining the probability
of being dealt three Kings in a deal of five cards, can be derived using a formula.
For other types of problems, such as the ones one generally sees in Business ex-
amples, we will use given subjective probabilities, or probabilities which can be
derived from such subjective probabilities.

E.1.4 Grouping Elementary Outcomes

We are often interested in knowing the probability that an outcome from a group
of outcomes will occur. For example, we deal a card from a shuffled deck of cards
and we want to know the probability that the card is an Ace (of any suit). Rather
than think of 52 elementary outcomes of this event, it simplifies matters consid-
erably to group the four outcomes Ace ♣, Ace ♦, Ace ♥, and Ace ♠ together as
one compound outcome called “Ace”, and to group the other 48 outcomes as “not
an Ace” or “other”. The picture for this event is
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In some books, the word “event” is used in the sense of “compound out-
comes”. This of course is not our usage as the word “event” has already been
defined. When the context is clear, we will generically refer to an “outcome” to
mean either an “elementary outcome” or a “compound outcome”.

The probabilities of the two compound outcomes are found by considering the
proportion of the 52 elementary outcomes on which they are based. We use the
notation P(outcome x) to mean the probability of outcome x occurring. Hence

P(Ace) =
4 cards which are Aces

52 cards in total

=
1

13

P(other) =
48
52

=
12
13

Note that

P(Ace) + P(other) =
1

13
+

12
13

= 1

In defining outcomes two rules must be followed.

1. The outcomes must be mutually exclusive. By this, we mean that two or
more outcomes cannot occur simultaneously. For example, it would be
WRONG to define three outcomes of a card deal event as “black”, “club”,
and “red”, since “black” and “club” overlap.
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2. The outcomes must be complete. By this, we mean that no other outcome
of the event could occur. For example, it would be WRONG to define three
outcomes of a card deal event as♣,♦, and♠. This is not complete because
the card could also be a heart.

When the outcomes are defined so that they are mutually exclusive and com-
plete, the sum of the probabilities must equal 1. Also, any probability must be
greater than or equal to 0 and less than or equal to 1. If an event has n outcomes
denoted as O1, O2, and so on up to On, then

P(O1)+P(O2)+ · · ·+P(On) = 1

and each P(Oi)≥ 0, i = 1,2, . . . ,n.

E.1.5 Types of Probabilities
We will speak of three types of probability: marginal, joint, and conditional.
A marginal probability is simply what we have referred to as “probability” up to
now. The adjective “marginal” comes from placing probabilities in a tabular form,
in which some of the probabilities are placed in the margins around the table.

A joint probability refers to the probability of two outcomes occurring simul-
taneously. If the two outcomes are from the same event, the joint probability
must be 0, because such outcomes must be mutually exclusive. The normal con-
text, however, is when we are dealing with compound outcomes which have been
grouped differently. For example, suppose that a card is dealt. One way to list
the outcomes is by suit: ♣, ♦, ♥, and ♠. Another way is to list the outcomes by
rank: Ace, 2, 3, . . . , Queen, and King. Yet another way is to list the outcomes by
colour: red, and black. We will consider these to be three events: a suit event, a
rank event, and a colour event.

If we pick any outcome from the suit event, and any outcome from the rank
event, we see that the joint probability is the product of the two marginal proba-
bilities. For example,

P(♠) =
13
52

=
1
4

P(Jack) =
4

52
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=
1

13

P(Jack♠) =
1

52
We see that

P(♠)P(Jack) =
(

1
4

)(
1

13

)
=

1
52

= P(Jack♠)

In situations like this, when the joint probability equals the product of the two
marginal probabilities, we say that the two outcomes are independent. In general,
outcome i of one event and outcome j of another event are independent if and
only if

P(Oi&O j) = P(Oi)P(O j)

Things are quite different, however, if we look at the suit and colour events.

P(♠) =
1
4

= 0.25

P(black) =
26
52

= 0.5

P(♠&black) =
13
52

= 0.25

These two outcomes are clearly not independent.
A conditional probability is written in the form P(Y/X), read as “the proba-

bility of Y given X”. It states the probability of outcome Y occurring given that
outcome X occurs. When X and Y are independent, P(Y/X) is simply P(Y). For
example,

P(♠/Jack) =
1
4
= 0.25

which is the same as
P(♠) = 13

52
= 0.25

When the two outcomes are not independent, we cannot use the marginal proba-
bility alone. For example,

P(♠/black) =
13
26



536 APPENDIX E. DECISION ANALYSIS EXTENSIONS

= 0.5

Note that in general, P(Y/X) 6= P(X/Y). Since all spades are black,

P(black/♠) =
13
13

= 1
6= P(♠/black)

It is when outcomes are not independent that information about one outcome
helps us to better determine what the other outcome is. For example, suppose that
a card has been drawn, and someone is asked to guess whether or not it’s a ♠.
That person has a 0.25 chance of guessing correctly. If he or she is told “Here’s
a hint – it’s a Jack”, then because of independence, the “hint” doesn’t help at all.
He or she still has only a 25% chance of guessing correctly. However, he or she is
told “Here’s a hint – the card is black”, then the probability of guessing correctly
rises to 0.5.

The three types of probabilities, marginal, joint, and conditional are related as
follows. The joint probability of X and Y is

P(X&Y ) = P(Y/X)×P(X) (E.1)

It can also been found as

P(X&Y ) = P(X/Y )×P(Y ) (E.2)

Example

A university has recently admitted 500 students into the first year of four profes-
sional programs. The numbers by gender and school are

Business Engineering Medicine Nursing Total
Male 95 110 25 10 240
Female 105 40 35 80 260
Total 200 150 60 90 500

A student’s file is picked at random from among the 500. What is the prob-
ability that this file belongs to a male/female student? This is an event with two
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outcomes, male and female. The probabilities are found as the ratio of the relevant
number of students.

P(male) =
240 male students

500 students in total
= 0.48

P(female) =
260
500

= 0.52

Note that
P(male) + P(female) = 0.48+0.52 = 1

Similarly, if we wish to know the probability that the student is majoring in busi-
ness, this is

P(business) =
200
500

= 0.4

The data can also be used to find joint probabilities. The probability that a
student is both female and majoring in medicine is

P(female & medicine) =
35
500

= 0.07

Indeed, by dividing each of the original numbers by 500 (the total), we obtain
a table giving the marginal and joint probabilities.

Business Engineering Medicine Nursing Total
Male 0.19 0.22 0.05 0.02 0.48
Female 0.21 0.08 0.07 0.16 0.52
Total 0.40 0.30 0.12 0.18 1.00

The joint probabilities appear in the main body, while (as mentioned before)
the marginal probabilities appear in the margins.

We can also find the conditional probabilities, either from the original data, or
from the table of marginal and joint probabilities. For example, using the original
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data, the probability that a student is studying medicine, given that the student is
female, is:

P(medicine/female) =
35

260
= 0.1346

On the other hand, the probability that a student is female, given that the student
is studying medicine, is:

P(female/medicine) =
35
60

= 0.5833

Using the table of marginal and joint probabilities we have

P(medicine/female) =
0.07
0.52

= 0.1346

P(female/medicine) =
0.07
0.12

= 0.5833

E.1.6 Sequential Events
Up till now, we have only considered single events. Now we consider the situation
where several events occur sequentially. We will look at the following: (1) tossing
a coin three times, (2) rolling a die three times, (3) dealing three cards (without
replacement) from a deck of cards, and (4) pulling socks (unseen) from a drawer
until a pair of the same colour is obtained.

To analyze these situations, we will make use of what are called probability
trees. In a probability tree, each event is represented by a circle, and each outcome
is represented by a branch. By convention, the tree grows from left to right. We
will be placing joint probabilities inside the circles, so they are sized appropri-
ately. In all cases, a probability of 1 will be written in the circle on the extreme
left, meaning that there is a 100% chance that something will happen. Alongside
each branch we place a verbal description of the outcome, and we give its proba-
bility. If the events are independent, then this will be a marginal probability. If the
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events are not independent, then this probability will be conditional on what has
happened up to that point.

Except for the extreme left circle, the joint probability placed in any circle is
the product of the probability on the branch to the left of that circle multiplied by
the joint probability in the circle at the left end of the branch. Equivalently, at any
circle, the joint probability is the product of all probabilities on the branches from
the extreme left to that circle.

Tossing a Coin Three Times

When a coin is tossed three times, we have three independent events, each of
which has two outcomes, heads and tails, of equal probability:
P(heads) = 0.5, and P(tails) = 0.5. We obtain the picture shown in Figure E.1.

Because of the symmetry of the probabilities, all eight final joint probabilities
are the same, 0.125. If the order in which heads or tails are obtained does not
matter, then we can combine some of the outcomes as follows: 3 heads; 2 heads,
1 tails (any order); 1 heads, 2 tails (any order); and 3 tails. Their probabilities are
as follows:

3 heads 0.125
2 heads, 1 tails 0.375
1 heads, 2 tails 0.375
3 tails 0.125
Total 1.000

Flipping a Die Three Times

This is similar to the tossing of a coin, except that the probabilities are different.
Suppose we are interested in obtaining a ‘two’ on the die, with all other numbers
being lumped together as ‘Other’. The probability of obtaining a ‘two’ on any flip
is 1

6 , and there is probability 5
6 of obtaining ‘Other’. Since the fractions are not

easy to express in decimal form, we will leave them as fractions. The probability
tree for this situation is shown in Figure E.2.

If the order in which a ‘two’ or ‘Other’ is obtained does not matter, then we
can combine some of the outcomes as follows: 3 twos; 2 twos, 1 other (any order);
1 two, 2 other (any order); and 3 other. Their probabilities are found by summing
the appropriate final circles on the right of the diagram. as follows:
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Figure E.1: Tossing a Coin Three Times
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Figure E.2: Flipping a Die Three Times
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3 twos 1
216

2 twos, 1 other 3× 5
216 = 15

216

1 two, 2 other 3× 25
216 = 75

216

3 other 125
216

Total 216
216 = 1

Dealing Three Cards Without Replacement

The two preceding examples involved independent outcomes. For example, the
probability of obtaining ‘heads’ on the third toss does not depend on what hap-
pened on the first two tosses of the coin. However, when dealing cards without
replacement,1 the outcomes are dependent. For example, if an Ace is dealt at the
outset, then the probability that the second card dealt is an Ace is 3

51 , since three
Aces remain in the deck which now has only 51 cards.

In the example which we consider here, we are looking at face cards (Kings,
Queens, Jacks). We are dealing three cards without replacement, and will use a
probability tree to obtain the probabilities of obtaining 0, 1, 2, or 3 face cards.

We begin with a standard deck of 52 cards, which contains 12 face cards (3 in
each of the 4 suits). On the first deal, there is probability 12

52 of obtaining a face
card, and probability 40

52 of obtaining any other card. On the second deal, there
are 51 cards left in the deck. If the first card dealt was a face card, then there is
probability 11

51 of obtaining a face card now; however, if the first card dealt was
not a face card, then there is probability 12

51 of obtaining a face card now. The
probability tree for this situation is shown in Figure E.3.

The probability of obtaining 3 face cards is 1320
132,600 or 0.0099548. There are

three ways to obtain exactly 2 face cards, each with probability 5,280
132,600 , hence

the probability of obtaining 2 face cards is 3(5,280)
132,600 or 0.1194570. There are three

ways to obtain exactly 1 face card, each with probability 18,720
132,600 , hence the proba-

bility of obtaining 1 face card is 3(18,720)
132,600 or 0.4235294. Finally, the probability of

obtaining no face card is 59,280
132,600 or 0.4470588. In summary:

1This is the normal way in which cards are dealt. Dealing with replacement would mean that
a card is dealt, it is put back into the deck, the deck is re-shuffled, and then a card is dealt, and so
on. When dealing with replacement, it is possible to obtain the same card twice.
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Figure E.3: Dealing Three Cards Without Replacement
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Number of Face Cards Probability
3 0.0099548
2 0.1194570
1 0.4235294
0 0.4470588

Total 1.0000000

From this table other values of interest may be obtained. For example, the
probability of obtaining at least two face cards is P(2)+P(3), which is

0.1194570+0.0099548 = 0.1294118

The probability of obtaining at least one face card can be found directly as
P(1)+P(2)+P(3), or it may be found indirectly as 1−P(0) :

1−0.4470588 = 0.5529412

Socks of the Same Colour Problem

Problem Description

A small girl reaches into the top drawer of a chest of drawers to obtain a pair of
socks. The drawer contains two pairs of blue socks (i.e. four socks) and three
pairs of red socks. The socks have not been folded into matched pairs, but instead
the ten socks lie randomly scattered about the drawer. She wishes to obtain two
socks of the same colour, but she is too short to be able to see the socks in the
drawer. She pulls out two socks. If both are of the same colour, she wears them.
Otherwise, she pulls out a third sock, which will, of course, guarantee that she
will obtain a pair of socks of the same colour.

What is the probability that she will obtain a blue pair of socks by this process?

Solution

While there may be only one physical movement which pulls the first two socks
from the drawer, it is useful to think of two socks being pulled sequentially, since
this aids in the calculation of the probabilities. It is very useful in a problem such
as this to draw a probability tree. Unlike our previous trees, there may be two
or three branches from start to finish. Like the card problem, we do not have
independence: at the outset, there are 4 chances in 10 of pulling a blue sock,
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but if the first sock is blue, then the probability of obtaining a blue sock on the
second pull falls to 3 chances in 9, but if the first sock was red, then the chance of
obtaining a blue sock on the second pull rises to 4 in 9.

The probability tree for the problem is shown in Figure E.4.

There are three ways to obtain a blue pair of socks; the joint probabilities of
these three ways are found on the probability tree.

1. two blue socks in a row, with probability 12
90

2. blue, then red, then blue, with probability 72
720

3. red, then two blue socks in a row, with probability 72
720

The probability of obtaining a blue pair of socks by any means is the sum of
these three probabilities.

P(blue pair) =
12
90

+
72

720
+

72
720

=
12
90

+
9

90
+

9
90

=
30
90

=
1
3

or 0.333...

As this example illustrates, trees are very useful for structuring problems.
However, there are faster ways of solving problems when a common pattern
emerges, such as in the coin and die examples. We shall see in the next chap-
ter that when this happens, a formula may be derived as an alternative to a tree.

E.1.7 Summary
Such things as the flip of a coin, the toss of a die, or the dealing of a card are
called events, for which there are 2, 6, and 52 possible outcomes respectively.
For such events, we make the Laplacian assumption that each outcome is equally
likely. For most events, however, the Laplacian assumption is not appropriate. For
example, the outcomes “oil is found” and “oil is not found” are not equally likely.
In a case such as that, the probability of finding oil is a subjective estimate.
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Figure E.4: Socks of the same Colour Problem
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Even with events such as the deal of a card, we may wish to group the out-
comes; when this happens they are usually no longer Laplacian. For example,
when a card is dealt it is either a ♣, or it is not. The probabilities of these out-
comes are obtained by counting the number of ways each could occur divided by
the number of ungrouped outcomes, e.g.

P(♣) = 13
52

= 0.25

Every probability is a number between 0 and 1 inclusive. Furthermore, the sum
of the probabiliites of the outcomes of an event must be 1.

We considered three types of probabilities: marginal, conditional, and joint.
When the outcomes are independent, the joint probability is the product of the two
marginal probabilities. When independence does not hold, the joint probability is
the product of conditional and marginal probabilities.

When we have two or more sequential events, a probability tree can be drawn
to help describe the situation, the sequence being shown from left to right. A circle
is used as a symbol for an event, and lines (branches) coming out of the circle
represent the outcomes of the event. Words can be placed on the tree to indicate
what is being described. Marginal and conditional probabilities are written on
the branches of the tree, and joint probabilities are computed and written in the
circles. One joint probability or the sum of several joint probabilities on the right-
hand branches will represent something from all the events, such as the number
of Queens obtained in a deal of five cards. Because of the large amount of work
required to use them, probability trees are most useful for one-of-a-kind situations.

E.1.8 Problems for Student Completion

1. What error exists in each of the following statements?

(a) There’s a 37% chance of high sales, a 44% chance of medium sales, and
a 29% chance of low sales.

(b) When five cards are dealt, the number of red cards received must be
between one and five inclusive.

(c) A spacecraft begins its journey with two radios operating. There is a 1%
chance that either radio will fail; the failure of one radio is independent of
the failure of the other. Hence there is a 98% chance that both radios will
remain working.
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2. A restaurant chain has the following promotion. The customer is given a
card with five rectangular areas (‘boxes’). In order to see what a box says,
it must first be scratched. Three boxes say “you lose”, one says “you win”,
and the other one says “scratch again”. The customer scratches boxes until
either “you lose” or “you win” appears [i.e. the card is void if both “you
win” and “you lose” have been scratched].

(a) What is the probability that the customer would win?

(b) If the card had two “you lose” and two “scratch again” boxes (still one
“you win”), what is the probability that the customer would win?

3. Professor John Smith teaches two undergraduate statistics courses. The
class of statistics 2500 has forty second year students and ten third year stu-
dents. The more advanced statistics 2501 has twenty second year students
and thirty third year students.

As an example of a business sampling technique, Prof. Smith randomly
selects a name from the class list for statistics 2500. If the name is that
of a student who is in his or her second year, then Prof. Smith will again
select a name from the statistics 2500 list (possibly the same one as before);
otherwise, he will randomly select a name from the statistics 2501 list.

What is the probability that:

(a) both students are in their second year?

(b) both students are in their third year?

(c) one student is in his or her second year and the other is in his or her third
year, regardless of order?

4. Repeat the above problem, except that now the first name selected is scratched
off the list of statistics 2500 students, and hence it cannot be selected twice.

5. A journey by plane from a city to a remote area, or from the remote area
back to the city, requires 8 hours flying time and can only be done in fair
weather. Because of a concern for crew fatigue, the plane cannot make a
same-day return flight. The pilot will fly out on the first fair day, and will
return on the next fair day after that. Over the next three days, the weather
forecast gives a probability for fair weather of 20% tomorrow, 60% for the
second day, and 35% for the third day.
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(a) Draw a probability tree for this situation, ending a branch if they return
to the city, or if three days have elapsed, whichever comes first.

(b) What is the probability that over the next three days

(i) the plane will never leave the city?
(ii) the plane makes it to the remote area, but not home again?
(iii) the plane is able to fly out to the remote area and return to the city?

6. Repeat the previous problem with the following information. On the first
day, the probability of fair weather is, as before, 20%. However, on the
second day, the probability of fair weather is only 10% if day 1’s weather
was foul, but is 70% if day 1’s weather was fair. On the third day, there is a
95% chance of fair weather if both previous days were fair, there is a 55%
chance of fair weather is either previous day was fair, and there is a 99%
chance of foul weather if both previous days were foul.
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E.1.9 Answers
1. Hints: (a) What is the sum of the probabilities? (b) What happens if there

are five black cards? (c) Draw a probability tree. Find the joint probability
that neither radio will fail.

2. (a) 0.25 (b) 1
3

3. (a) 0.64 (b) 0.12 (c) 0.24

4. (a) 0.6367 (b) 0.12 (c) 0.2433

5. (b) (i) 0.208 (ii) 0.476 (iii) 0.316

6. (b) (i) 0.7128 (ii) 0.0702 (iii) 0.217
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E.2 Sensitivity Analysis (Payoff Matrices)

The subject of sensitivity analysis (also called what-if analysis) is a recurring
theme throughout the field of management science. The whole point to build-
ing a model is that it is much cheaper than building what the model represents.
We can play around with the model quite inexpensively, and one of the things that
we should do is see how sensitive it is to changes in the built-in assumptions of
the model.

The Greek symbol ∆ (pronounced delta) is often used to represent a change to
something. We might use ∆p (read as “delta p”) to represent a change in probabil-
ity,2 or ∆c to represent a change in cost; where the context is clear, we can simply
use ∆. Usually, ∆ can be either positive or negative. To keeps things simple, we
often just vary one parameter at a time, but changing probabilities is an impor-
tant exception. If one probability is increased, then at least one other probability
must be decreased (by the same absolute amount) so that the probabilities remain
summed to one. Also, in this situation, we must establish a domain for ∆ based
on the fact that no probability can go below 0 or above 1.

E.2.1 Theatre Example

Included in the original parameters are that the probability of fringe interest is 0.2,
and the probability of average interest is 0.7. Suppose that we now wish to see
what happens if we vary these two probabilities, with everything else remaining
constant. Suppose that the first is increased by ∆, and the other is decreased by
∆. (Doing it the other way around would be fine; everything will work out in the
end.) Hence we have:

p(fringe) = 0.2+∆

p(average) = 0.7−∆

We must ensure that neither probability goes below 0. If we do this, we will
automatically ensure that neither probability goes above 1. The condition that
0.2+∆ ≥ 0 will be true provided that ∆ ≥ −0.2. The condition that 0.7−∆ ≥ 0
will be true provided that ∆≤ 0.7. Hence, the domain of ∆ is:

−0.2≤ ∆≤ 0.7

2Note that in this context ∆p is simply one construct; it does not mean ∆ multiplied by p.
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[Note: In general if the two probabilities are a+∆ and b−∆, then we must have
−a≤ ∆≤ b.]

When we first solved the problem we obtained:

Demand for Tickets
Theatre 3-Night Fringe Average Great Heavy Expected
Size Capacity Rent 250 800 2300 4500 Value
Small 300 $600 1900 2400 2400 2400 $2300
Medium 1200 $1800 700 6200 10,200 10,200 $5500
Large 3600 $4700 −2200 3300 18,300 31,300 $3830

Probability 0.20 0.70 0.09 0.01

Now, in the probability row, the 0.20 becomes 0.20+∆, and the 0.70 becomes
0.70−∆, and we wish to determine the revised Expected Values.

Demand for Tickets
Theatre 3-Night Fringe Average Great Heavy Expected
Size Capacity Rent 250 800 2300 4500 Value
Small 300 $600 1900 2400 2400 2400
Medium 1200 $1800 700 6200 10,200 10,200
Large 3600 $4700 −2200 3300 18,300 31,300

Probability 0.20 0.70 0.09 0.01
+∆ −∆

The long way to do this, using the “Small” alternative to illustrate, is to re-compute
the entire dot product (“Small” row and the Probability row).

EV(small) = (0.2+∆)1900+(0.7−∆)2400+ .09(2400)+ .01(2400)
= 0.2(1900)+1900∆+0.7(2400)−2400∆+ .09(2400)+ .01(2400)
= 0.2(1900)+(0.7+0.09+0.01)2400+(1900−2400)∆
= 2300−500∆

The short way to do this is to recognize that the “2300” has been computed already
– all we need to do is include the terms involving “∆”. [If ∆ = 0, we must obtain
the original result.] All we need are the columns which contain the ∆’s and the
original Expected Values.
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Expected Value
Fringe Average Original ∆ Term

Small 1900 2400 2300
Medium 700 6200 5500

Large −2200 3300 3830
∆ −∆

The short way is simply:

EV(small) = 2300+1900∆+2400(−∆)

= 2300+1900∆−2400∆

= 2300−500∆

For the medium and large theatre alternatives we have:

EV(medium) = 5500+700∆+6200(−∆)

= 5500−5500∆

EV(large) = 3830+(−2200)∆+3300(−∆)

= 3830−5500∆

The completed table is:

Expected Value
Fringe Average Original ∆ Term

Small 1900 2400 2300 −500∆

Medium 700 6200 5500 −5500∆

Large −2200 3300 3830 −5500∆

∆ −∆

Comparing Medium with Large, we see that for any value of ∆,

5500−5500∆ > 3830−5500∆

and hence Medium is better than Large. These lines are parallel (because of the
−5500) and therefore they never intercept.

If we compare Small with Medium, we have EV(Small) = 2300−500∆ versus
EV(Medium) = 5500−5500∆. We are indifferent between two alternatives when
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neither is preferred to the other. To find the point of indifference, we set the two
payoffs equal to each other:

EV(Small) = EV(Medium)
2300−500∆ = 5500−5500∆

5000∆ = 3200
∆ = 0.64

This value is within the domain −0.2 ≤ ∆ ≤ 0.7. [Were it not so, there would be
no point of indifference.]

We know that Medium is preferred at ∆ = 0 (the current situation), and we
have found that we would switch to Small at ∆ = 0.64. Since these are the only
alternatives (because Large was eliminated), Medium must be best for any ∆ in
the domain < 0.64, there’s a tie at 0.64, and Small is best for all other values. By
letting both alternatives be considered “best” at the tie, we can state the regions of
preference as:

−0.2≤ ∆≤ 0.64 Medium
0.64≤ ∆≤ 0.70 Small

We can also show this information on a number line for ∆ (where −0.2≤ ∆≤
0.7), highlighting with colour the regions for the recommended theatre size.

−.2 0 .2 .4 .6 6
0.64

∆

SmallMedium

∆ = 0.64 is a very large change for a probability. If we believe that the initial
estimate of 0.2 couldn’t be off the true value by all that much, then we would be
quite confident that our initial choice of Medium is correct.

The point of indifference can also be expressed in terms of the original proba-
bilities. These are:

p(fringe) = 0.2+0.64
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= 0.84

p(average) = 0.7−0.64
= 0.06

E.2.2 A More Complicated Example
The preceding example was fairly easy in that we were able to reduce it down to
two alternatives, and so we only had to find a single point of indifference. Usually,
however, we cannot eliminate any alternative simply by inspection. When this
happens, a conceptually easy approach is to make a graph of EV versus ∆. Doing
it first this way gives us a shorter analytical method for this type of problem. The
example presented here provides an illustration of these concepts.

Consider an example with four alternatives and three outcomes, for which we
begin with all payoffs having been found, and the expected values having been
calculated:

O1 O2 O3 EV
A1 7 5 4 5.1
A2 5 5 6 5.3
A3 4 6 3 4.7
A4 6 4 6 5.0

Prob. .2 .5 .3

Hence the recommendation is to choose alternative A2, with an expected pay-
off of 5.3. Now suppose that we wish to vary the probabilities for O2 and O3. We
will let the probability of O2 be 0.5+∆, and the probability of O3 be 0.3−∆. The
domain for ∆ is therefore:

−0.5≤ ∆≤ 0.3

The new expected values are:

O2 O3 EV
A1 5 4 5.1+∆

A2 5 6 5.3−∆

A3 6 3 4.7+3∆

A4 4 6 5.0−2∆

∆ −∆

Unlike the previous example, it is difficult to remove an alternative simply by
inspection; one approach is to draw a graph.
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Graphical Solution Each of the EV equations is a straight line. For each of
these, all we need do is find the EV for any ∆ 6= 0, and this along with the original
EV (i.e. at ∆ = 0) gives the two distinct points needed to define the line. How-
ever, with a little bit of extra work we can obtain each line with a check on the
calculations. To do this we find the EV at the lower limit for ∆, and then find the
EV at the upper limit for ∆. These two points are used to define the line, and the
check on the calculations comes from making sure that the line passes through the
original EV at ∆ = 0. In this example, the lower and upper limits for ∆ are at−0.5
and 0.3 respectively. For alternative 1, the EV ranges from 5.1+(−0.5) = 4.6
to 5.1 + 0.3 = 5.4. For alternative 2, the EV ranges from 5.3− (−0.5) = 5.8
to 5.3−0.3 = 5.0. For alternative 3, the EV ranges from 4.7+3(−0.5) = 3.2 to
4.7+3(0.3)= 5.6. Finally, for alternative 4 the EV ranges from 5−2(−0.5)= 6.0
to 5−2(0.3) = 4.4. In summary we have:

EV at
∆ =−0.5 ∆ = 0 ∆ = 0.3

A1 4.6 5.1 5.4
A2 5.8 5.3 5.0
A3 3.2 4.7 5.6
A4 6.0 5.0 4.4

The horizontal axis goes from ∆ = −0.5 to ∆ = 0.3. Since the smallest EV is
3.2, and the largest is 6.0, we can save vertical space by having the axis run only
between 3 and 6 (rather than starting at 0). It is helpful to draw this graph with
three vertical axes: one through the lower limit for ∆; one through 0; and one
through the upper limit for ∆.

With the axes drawn, we proceed with drawing the four lines. The A1 line
goes from 4.6 on the left vertical axis to 5.4 on the right vertical axis. Next to this
line the A1 symbol is drawn. On the centre vertical axis, we see indeed that the
line passes through the point (0, 5.1). The other three lines are drawn with their
symbols, each time verifying that the point on the centre vertical axis is where it
should be.



E.2. SENSITIVITY ANALYSIS (PAYOFF MATRICES) 557

∆

EV

−.4 −.2 0 .23.0

3.5

4.0

4.5

5.0

5.5

6.0

3.0

3.5

4.0

4.5

5.0

5.5

6.0

r

r

��
��

��
��

��
��

��
��

��
��

��
��

A1

r

r

PPPPPPPPPPPPPPPPPPPPPPPP

A2

r

r

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

A3

r

r

Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q

A4

We want, of course, the line segments which maximize the expected value.
These line segments have been highlighted on the graph. At ∆ =−0.5, A4 is best.
As we move to the right, the best alternative switches to A2, then A1, and then A3.
Hence we need to find where the following pairs of lines intercept: A4 and A2; A2
and A1; and A1 and A3.

To find the value of ∆ at which the A4 and A2 lines intercept, we set the EV
equations equal to each other:

EV(A4) = EV(A2)

5.0−2∆ = 5.3−∆

−∆ = 0.3
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∆ = −0.3

At this value for ∆, EV(A4) = 5.0− 2(−0.3) = 5.6. [Also, EV(A2) = 5.3−
(−0.3) = 5.6.] Hence the two lines intercept at (−0.3, 5.6).

We then find the other two interception points:

EV(A2) = EV(A1)

5.3−∆ = 5.1+∆

−2∆ = −0.2
∆ = 0.1

At this value for ∆, EV(A2) = 5.3− (0.1) = 5.2.

EV(A1) = EV(A3)

5.1+∆ = 4.7+3∆

−2∆ = −0.4
∆ = 0.2

At this value for ∆, EV(A1) = 5.1+(0.2) = 5.3.
There are three ways that we could report these values. As we did in the

previous example, we could draw a number line, highlighting the regions where a
particular alternative is best. Secondly, we could indicate this information on the
graph, which of course gives the absolute rather than just the relative ranking of
each alternative. Thirdly, we could simply report the regions as follows:

Region for ∆ Best Alternative
−0.5≤ ∆≤−0.3 A4
−0.3≤ ∆≤ 0.1 A2

0.1≤ ∆≤ 0.2 A1
0.2≤ ∆≤ 0.3 A3

Sometimes, we do not need to know the best alternatives over the entire do-
main of ∆. Instead, we might only wish to determine the values for ∆ for which
the current solution (i.e. at ∆ = 0) remains optimal. For this example, the current
solution remains A2 provided that:

−0.3≤ ∆≤ 0.1
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Analytical Solution We can also solve such a problem quickly as follows. First,
here are some general comments for any situation. Consider two alternatives, with
expected payoffs a+b∆, and c+d∆, where a > c and b 6= d (i.e. the two lines are
not parallel). These alternatives have the same expected payoff when:

c+d∆ = a+b∆

(d−b)∆ = a− c

∆ =
a− c
d−b

If the critical value (a−c)/(d−b) turns out to be outside of the domain of ∆, then
the c+ d∆ alternative is not best for any value of ∆. If, however, it is inside the
domain, then we must consider this alternative along with any others.

With many alternatives we find the critical value of ∆ for each one (where
the comparison alternative is the one optimal at ∆ = 0); we seek the ones whose
critical values are immediately on either side of 0.

Now we solve the example from before, first going back to the table showing
the effects of ∆.

O2 O3 EV
A1 5 4 5.1+∆

A2 5 6 5.3−∆

A3 6 3 4.7+3∆

A4 4 6 5.0−2∆

∆ −∆

At ∆ = 0, A2 is best. Hence we find where the A1, A3, and A4 lines meet the A2
line:

EV(A2) = EV(A1)

5.3−∆ = 5.1+∆

−2∆ = −0.2
∆ = 0.1

EV(A2) = EV(A3)

5.3−∆ = 4.7+3∆

−4∆ = −0.6
∆ = 0.15
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EV(A2) = EV(A4)

5.3−∆ = 5.0−2∆

∆ = −0.3

Comparing the critical values 0.1, 0.15, and −0.3, the ones immediately on
either side of 0 are −0.3 (line A4) and 0.1 (line A1). Hence A2 remains optimal
from −0.3 to 0.1. Below −0.3, A4 is best, and just above 0.1, A1 is best. Further
on, the A1 and A3 lines will intercept:

EV(A1) = EV(A3)

5.1+∆ = 4.7+3∆

−2∆ = −0.4
∆ = 0.2

Over the entire domain of ∆ we have:

Region for ∆ Best Alternative
−0.5≤ ∆≤−0.3 A4
−0.3≤ ∆≤ 0.1 A2

0.1≤ ∆≤ 0.2 A1
0.2≤ ∆≤ 0.3 A3

E.2.3 Sensitivity Problem 1
In this problem we use the data of the computer example (Problems for Student
Completion, Problem 2 on page 387) with salvage value, except that we now allow
the probabilities of demand for 10 and demand for 14 computers to vary. Make
a graph of Expected Value vs. ∆ for the five alternatives, and from this determine
all the regions of ∆ where one of the alternatives is better than the others.

E.2.4 Sensitivity Problem 2
O1 O2 O3 EV

A1 8 2 4
A2 9 7 3
A3 70 15 −30
A4 −40 60 20

Prob. .3 .1 .6
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(a) Find the best alternative, using expected value as the decision criterion.

Now suppose that the probability of O1 increases by ∆, the probability of O2
increases by 3∆, the probability of O3 decreases by 4∆.

(b) What is the domain of ∆?

(c) Find, by the analytical method, the regions of ∆ where each alternative is best.

E.3 Sensitivity Analysis (Decision Trees)

Here we look at two types of sensitivity analysis applied to the New Detergent
case which was analyzed at the outset of the chapter. While we could examine
the effect of changing one or more of the parameters by any amount, usually we
are only interested in finding the point(s) at which the recommendation would
change. This is equivalent to finding the endpoints for which the proposed change
does not alter the current recommendation. First, we will look at changing costs,
and then we shall look at changing probabilities.

E.3.1 Changing Costs

The effect of changing the cost of making the ads is very easy to analyze. From
Figure 9.4, we see that not making the ads leads to a payoff of 0, and the payoff
at the square on the right of the make ads alternative branch has a ranking payoff
of $171,700. Therefore, the ads can cost up to $171,700 before making the other
alternative better. At the other extreme, if the ads cost nothing then the make ads
alternative is of course still preferred. Since the ads currently cost $15,000, we
could say that the cost could be decreased by $15,000 or increased by $156,700
without affecting the current recommendation.

Alternatively we could use the concept of a change ∆. We can think of the
cost of the ads as being 15+∆, where ∆ is the change to the cost in thousands
of dollars, and where the context requires that ∆ be ≥ −15. The payoff at the
initial node is 156.7−∆ (i.e. 171.7− (15+∆), and to keep the recommendation
unchanged we require that 156.7−∆ be at least as good as the payoff of the other
alternative (which is 0), i.e. 156.7−∆ ≥ 0, or ∆ ≤ 156.7. In other words, the
cost could be decreased by $15,000 or increased by $156,700 without affecting
the current recommendation.
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The effect of changing the cost of the test market campaigns is a bit trickier.
While only one cost is being changed, two payoffs are affected by this change.
Suppose that the cost (in thousands of dollars) of a test market campaign is now
10 + ∆ (where ∆ is in thousands of dollars and ∆ ≥ −10). The cost next to
the alternative branch for testing in two markets is therefore 20 + 2∆. There-
fore, the ranking payoff at the square labelled “Number of Test Markets” is either
181.70− (10+∆) or 188.2224− (20+ 2∆), whichever is higher. These expres-
sions simplify to 171.70−∆ and 168.2224−2∆ respectively. We now need to find
the values for ∆ for which the currently better alternative remains better.

171.70−∆ ≥ 168.2224−2∆

∆ ≥ −3.4776

In other words, as long as the cost of one test market campaign does not fall by
more than $3,477.60, we keep testing in just one test market. Conversely, if the
cost falls by more than this amount (i.e. if the cost per test market becomes less
than $10,000−$3,477.60 = $6522.40), then the recommended solution is to test
in two markets.

We must also check what happens in the rollback. With the same recommen-
dation (use one test market), we have 171.7− ∆ at the square labelled “Num-
ber of Test Markets”. This is turn causes the payoff at the initial square to fall
to 156.7−∆, and the recommendation at this initial square stays the same for
∆≤ 156.7.

In summary, if ∆ > −3.4776, then one test market is preferred to two, and if
∆ ≤ 156.7, then the company prefers testing in one market to doing nothing. In
other words the recommendation remains unchanged provided that:

−3.4776≤ ∆≤ 156.70

The current cost of the test market campaign is $10,000. Hence, in absolute terms,
the recommendation remains unchanged provided that the cost of the test market
campaign remains between $6522.40 and $166,700.

E.3.2 Changing Probabilities
To illustrate the effect of changing probabilities, consider the probabilities of suc-
cess and failure in the national campaign, after two markets have been tested, and
where one success and one failure has been obtained. These numbers are currently
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0.35 and 0.65 for success and failure respectively. Now we will let the probability
of success be 0.35+∆, and hence the probability of failure is 0.65−∆. To pre-
vent a probability from going below 0 or above 1, we must place the condition
that −0.35≤ ∆≤ 0.65. These adjustments are shown on the appropriate outcome
branches on the right-hand side of Figure E.5.

These changes cascade through the tree, affecting most of the ranking pay-
offs. At the two bottom circles on the right, we increase the payoffs by 4000∆+
400(−∆) = 3600∆. The 1660 figure does not need to be recomputed – this is the
advantage of dealing with changes to the current probabilities rather than looking
at absolute probabilities. At the squares immediately to the left, the payoffs will
also increase by 3600∆, provided that the “proceed” alternative remains better
than the “abandon” alternative. This will be the case provided that:

810+3600∆≥ 0
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This condition simplifies to ∆≥−0.225. If ∆ goes below this figure, then the
abandon alternative would be preferred to the proceed alternative, but this change
would not affect the overall recommendation, because this part of the tree is not
part of the current recommendation. Now let us suppose that ∆ ≥ −0.225, and
see what affect this has on the rest of the tree. The bottom two payoff nodes also
increase by 3600∆, and then the rollback increases the payoffs by 0.92(3600∆) =
3312∆ after a success in Lethbridge, and by 0.08(3600∆) = 288∆ after a failure
in Lethbridge. Finally, we obtain an increase of 0.12(3312∆) + 0.88(288∆) =
650.88∆ at the circle on the extreme left, and this increase is transferred to the
appropriate place on Figure E.6.

For the current recommendation to remain unchanged, we must have

171.70 ≥ 188.2224+650.88∆−20
171.70 ≥ 168.2224+650.88∆

3.4776 ≥ 650.88∆

0.00534... ≥ ∆

Hence the recommendation remains unchanged provided that ∆ ≤ 0.00534. This
is not much, when the current probability of success nationally (after one success,
and one failure) is 0.35, with all probabilities being reported to the nearest 5%. All
it would take is an increase to say 36%, and the recommendation would change to
testing in two markets, and then proceeding if at least one of these turns out to be
a success.
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Note: All financial information
is in thousands of dollars.
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E.3.3 Sensitivity Problem
This is an extension to the Crop Planting problem found on page 450. It requires
that the solution to the problem has been already found.

(a) Now suppose that the cost of planting potatoes is $60,000+∆. For ∆ both
positive and negative, find the limits for which the recommendation from the
original solution does not change.

(b) Now suppose that the cost of planting potatoes is fixed at $60,000, but the
probability of a mild blight on the first planting is 0.2+∆, with the probability
of a severe blight on the first planting being unchanged. For ∆ both positive
and negative, find the limits for which the recommendation from the original
solution does not change.

(To avoid confusion between parts (a) and (b)), the terms ∆c and ∆p could be
used.)
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