OpenSolver - An Open Source Add-in to Solve
Linear and Integer Progammes in Excel

Andrew J Mason

Abstract OpenSolver is an open source Excel add-in that allows spreadsheet users
to solve their LP/IP models using the COIN-OR CBC solver. OpenSolver is largely
compatible with the built-in Excel Solver, allowing most existing LP and IP models
to be solved without change. However, OpenSolver has none of the size limita-
tions found in Solver, and thus can solve larger models. Further, the CBC solver
is often faster than the built-in Solver, and OpenSolver provides novel model
construction and on-sheet visualisation capabilities. This paper describes Open-
Solver’s development and features. OpenSolver can be downloaded free of charge
at http://www.opensolver.org.

1 Introduction

Microsoft Excel for Windows [5], and its inbuilt Solver optimiser [3], form an ideal
tool for delivering optimisation systems to end users. However, Solver imposes lim-
itations on the maximum size of problem that can be solved. OpenSolver has been
developed as a freely available open-source Excel add-in for Microsoft Windows
that uses the COIN-OR (Computational Infrastructure for OR) [2] CBC optimiser
[1] to solve large instances of linear and integer programs.

We start by briefly describing how optimisation models are built using Solver.
Readers familiar with Solver may wish to skip to the next section. A typical linear
programming model and its Solver data entry are shown in Figure 1. The decision
variables are given in cells C2:E2; of these, C2 must be binary and C3 must be
integer. Cell G4 defines the objective function using a ‘sumproduct’ formula defined
in terms of the decision variables and the objective coefficients in cells C4:E4. Each
of the constraints are similarly defined in terms of a constraint left hand side (LHS)
in G6:G9 and right hand side (RHS) in 16:19. Note that the ‘min’, ‘binary’, ‘integer’

Andrew J] Mason
Department of Engineering Science, University of Auckland, Private Bag 92019, Auckland, e-mail:
a.mason@auckland.ac.nz

Subsequently published as: 1

Mason, A.J., "OpenSolver - An Open Source Add-in to Solve Linear and Integer Progammes in
Excel", Operations Research Proceedings 2011, eds. Klatte, Diethard, Liithi, Hans-Jakob,
Schmedders, Karl, Springer Berlin Heidelberg

pp 401-406, 2012, http://dx.doi.org/10.1007/978-3-642-29210-1_64, http://opensolver.org

Please cite as the above. Also, see http://opensolver.org

2 Andrew J] Mason

and constraint relations shown on the spreadsheet are for display purposes only, and
are not used by Solver.

T [P e Vo o e e e Solver Parameters | ==
1 X1 X2 X3 Set Target Cell: fsGe4 @ -ﬁolve
2 1 2 3
5 Equal To: Max @ Min vaueof: |0
b iteger o= = - = Close
3 dn By Changing Cells: ;J
4] |min| 2|3 |4 20 scs2sEs? [[oues
5
5 st w11 12 68 <« 60 Subject to the Constraints: l Options]
— §C%2 = binary Add
7 21 22 23 134 <= 120 D22 = integer A
g 21 22 23 -4 >= 500 68614657 <= S186:4187 Change
- $G53 »= 5158 =
g 15 34 -32 -9 = 500 ece _ €69 — Reset Al
Help

Fig. 1 A typical spreadsheet optimization model (left) and the Solver entry for this. Many models
do not follow this layout, but instead ‘hide’ the model inside the spreadsheet formulae.

2 Constructing a Mathematical Model from a Solver Model

The means by which Solver stores a model does not appear to be documented. How-
ever, using the Excel Name Manager add-in [7], developed by Jan Karel Pieterse
of Decision Models UK, shows that Solver uses hidden ‘names’ to contain all the
model’s details. OpenSolver reads these values to determine the cells that define the
model and Solver options.

Excel’s representation of the optimisation model is given in terms of cells that
contain constants and formulae. Because OpenSolver restricts itself to linear mod-
els, we wish to analyse the spreadsheet data to build an optimisation model with
equations of the form:

Min/max cixy+caxa + ... + cpxp
Subject to a;1x1 +apxy + ... + awxy >/=/< by, i=1,2,...m

where >/=/< denotes either >, = or <. Assuming the model is linear, then the
Excel data can be thought of as defining an objective function given by

Obj(x) = co + c1x1 + c2x2 + ...CpXn
where X = (x1,X2,...,X,) is the vector of n decision variables, Obj(x) is the objective
function cell value, and c¢g is a constant. Similarly, each constraint equation i is

defined in Excel by

LHS;(x) >/=/< RHS;(x) = LHS;(x) — RHS;(x) >/=/<0, i=12,...m

OpenSolver - Open Source Optimisation for Excel 3

where LHS;(x) and RHS;(x) are the cell values for the left hand side and right hand
side of constraint i respectively given decision variable values x. Because Solver
allows both LHS;(x) and RHS;(x) to be expressions, we assume that both of these
are linear functions of the decision variables. Thus, assuming the model is linear,
we have

anxi +apxy + ...aipx, — by = LHS;(x) —RHS;(x), i=1,2,...,m.

OpenSolver determines the coefficients for the objective function and constraints
through numerical differentiation. First, all the decision variables are set to zero,
x =xp = (0,0,...,0) giving:

co) = Obj(X())
b,‘ = RHS,'(XQ) —LHS,’(Xo),i: 1,2, e, m

Then, each variable x; is set to 1 in turn on the spreadsheet, giving a sequence of
decision variable values X =X, j = 1,2,...,n where X; = (x1j,X2j,...,X,j) is a unit
vector with the single non-zero element x;; = 1. The spreadsheet is recalculated for
each of these x; values and the value of the objective and the left and right hand sides
of each constraint recorded. This allows us to calculate the following coefficients:

Cj= Obj(Xj) —C0
ajj = LHS(XJ) —RHS(XJ)—f—b,,l =],2,...,171

The speed of this process depends on both the speed at which OpenSolver can
read and write data to the spreadsheet, and the time Excel takes to re-calculate the
spreadsheet. Newer versions of OpenSolver have been optimised to access larger
groups of cells in each operation, reducing run times for large models. As an exam-
ple, a staff scheduling model with 532 variables and 1909 constraints takes 36s to
build (and just 1 second to solve) on an Intel Core-2 Duo 2.66GHz laptop.

3 Excel Integration and User Interface

OpenSolver is coded in Visual Basic for Applications and runs as an Excel add-
in. The add-in presents the user with new OpenSolver controls within the standard
ribbon interface that provide buttons for common operations and a menu for more
advanced operations. (In earlier versions of Excel without a ribbon, OpenSolver
appears as a menu item.) These OpenSolver controls are shown in Figure 2.
OpenSolver is downloaded as a single .zip file which when expanded gives a
folder containing the CBC files and the OpenSolver.xlam add-in. Double clicking
OpenSolver.xlam loads OpenSolver and adds the new OpenSolver buttons and menu
to Excel. OpenSolver then remains available until Excel is quit. If required, the

4 Andrew J] Mason

6‘“. =] 5 OpenSolverxdsy - Microsoft Excel S =T £
Home Insert Page Layout Formulas Data Review View Developer Add-Ins Acrobat @) - T X
o o sl 52 A= = B 5 | Tpsower| [EEH ..y ShowiHide Model
= Q Z¥1z A If r SEE = .,. B A
T 55} — Quick Solve

Get External || Refresh il Sort Filter 7, Textto Remove . Outline Model Solve
Data~ Allr = A7 || Columns Duplicates =P~ i = OpenSolver ~

Connections Sort & Filter Data Tools Analysis OpenSaolver

Fig. 2 OpenSolver’s buttons and menu appear in Excel’s Data ribbon.

OpenSolver and CBC files can be copied to the appropriate Microsoft Office folder
to ensure OpenSolver is available every time Excel is launched.

Users can construct their models either using the standard Solver interface or
using a new OpenSolver dialog. The new dialog provides a number of advantages,
including highlighting of selected constraints on the sheet, and easier editing of
constraints.

We have found OpenSolver’s performance to be similar or better than Solver’s.
CBC appears to be a more modern optimizer than Solver’s, and so gives much
improved performance on some difficult problems. For example, large knapsack
problems which take hours with the Excel 2007 Solver are solved instantly using
OpenSolver, thanks to the newer techniques such as problem strengthening and pre-
processing used by CBC [1].

To review an optimisation model developed using the built-in Solver, the user
needs to check both the equations on the spreadsheet and the model formulation
as entered into Solver. This separation between the equations and the model form
makes checking and debugging difficult. OpenSolver provides a novel solution to
this in the form of direct model visualisation on the spreadsheet. As Figure 3 shows,
OpenSolver can annotate a spreadsheet to display a model in which the objective
cell is highlighted and labeled min or max, the adjustable cells are shaded with
any binary and integer decision variable cells being labeled ‘b’ and ‘i’ respectively,
and each constraint is highlighted and its sense shown. We have found this model
visualisation to be very useful for checking large models.

4 Automatic Model Construction

We have developed additional functionality that allows OpenSolver to build Solver-
compatible models itself without requiring the usual step-by-step construction pro-
cess. Our approach builds on the philosophy that the model should be fully docu-
mented on the spreadsheet. Thus, we require that the spreadsheet identifies the ob-
jective sense (using the keyword ‘min’ or ‘max’ or variants of these), and gives the
sense (<, =, or >) of each constraint. Our example spreadsheet shown in Figure 1
satisfies these layout requirements.

To identify the model, OpenSolver starts by searching for a cell containing the
text ‘min’ or ‘max’ (or variants of these terms). It then searches the cells in the

OpenSolver - Open Source Optimisation for Excel 5

vicinity of this min/max cell to find a cell containing a formula (giving preference
to any cell containing a ‘sumproduct’ formula); if one is found, this is assumed
to define the objective function. The left and/or right hand side formulae for the
constraints are then located in a similar fashion by searching for occurrences of <=
(or ‘<’), = and, >= (or ‘>’). The predecessor cells of all these formulae are then
found, and the decision variables are then taken as those predecessors cells that have
as successors either (1) at least two constraints or (2) the objective and at least one
constraint.

The final step is to identify any binary or integer restrictions on the decision
variables. These are assumed to be indicated in the spreadsheet by the text ‘binary’
or ‘integer’ (and variants of these) entered in the cells beneath any restricted decision
variables of these types.

5 Advanced Features

OpenSolver offers a number of features for advanced users, including:

The ability to easily solve an LP relaxation with a single menu click,

Interaction with the COIN-OR CBC solver via the command line,

Faster running using ‘Quick Solve’ when repeatedly solving the same problem
with a succession of different right hand sides,

Viewing of the CBC .Ip input file showing the model’s equations, and,
Detection and display of non-linearities in the model.

Alaralcalanlsr il el a2 | x
1 X1 X2 X3 9 1 0923 1
2 :_rln 'nz 3 10/ [<19 20 21
3 : 1
4| min 2 3 4 |mm20] 12/ | 20 -1.846 < 50
5 13
6] st 10 11 12 65 |<=[_ 60 14
7 21 22 23 134 [<=| 120 15 12> 1]

8 21 22 -23 -4 |=={>500 16
18 0522

an

Fig. 3 OpenSolver can display an optimisation model directly on the spreadsheet. The screenshot
on the left shows OpenSolver’s highlighting for the model given earlier, while the screenshot on
the right illustrates OpenSolver’s highlighting for several other common model representations.

6 Andrew J] Mason

6 User Feedback

It is difficult to determine how OpenSolver is being used, but a comment by Joel
Sokol from Georgia Tech on the OpenSolver web site [6] describes one use of Open-
Solver as follows:

Thanks, Andrew! I’'m using OpenSolver on a project I’'m doing for a Major League Baseball
team, and it’s exactly what I needed. It lets the team use their preferred platform, creates and
solves their LPs very quickly, and doesn’t constrain them with any variable limits. Thanks
again! - Joel Sokol, August 11, 2010

OpenSolver has been used to successfully solve problems which have as many as
70,000 variables and 76,000 constraints [6]. Further, users report that they appreciate
being able to view the algebraic form of the Excel model given in the .Ip file [4].

7 Conclusions

We have shown that it is possible to leverage the COIN-OR software to provide
users with a new open source option for delivering spreadsheet-based operations
research solutions. While our software is compatible with Solver, it also provides
new innovative tools for visualising and building spreadsheet models that we hope
will benefit both students and practitioners of spreadsheet optimisation.

Acknowledgements The author wishes to thank Iain Dunning (Department of Engineering Sci-
ence, University of Auckland) who has made a huge contribution in developing the AutoModel and
Model dialog code. The author also wishes to thank Kathleen Gilbert (Dept of Engineering Sci-
ence) for the many improvements she has made to OpenSolver, including the non-linearity checks.
The author gratefully acknowledges the contribution of Paul Becker of Eclipse Engineering for
developing the Excel 2003 interface code in OpenSolver. Finally, OpenSolver would not have been
possible without the huge software contributions made by the COIN-OR team.

References

1. CBC: A COIN-OR Integer Programming Solver, https://projects.coin-or.org/Cbc. Cited
November 2010

2. COIN-OR: Computational Infrastructure for Operations Research, http://www.coin-or.org.
Cited July 2011

3. Frontline Systems: http://www.solver.org. Cited July 2011

4. Martin, K.: ‘COIN-OR: Software for the OR Community,” Interfaces 40(6), pp. 465-476,
INFORMS (2011)

5. Microsoft Excel. In: Wikipedia, http://en.wikipedia.org/wiki/Microsoft_Excel. Cited July
2011

6. OpenSolver web site, http://opensolver.org. Cited July 2011

7. Pieterse, J.K.: Name Manager for Excel, http://www.jkp-ads.com/officemarketplacenm-
en.asp. Cited November 2010

